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FLUX PINNING IN HIGH TEMPERATURE SUPERCONDUCTORS
INVESTIGATED BY MAGNETIC RELAXATION MEASUREMENTS!
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Different methods for the analyses of measurements of the time dependence of the
magnetic: moment in high 7. superconductors are discussed. Examples are given
for Bi2223-tapes, powder-melt-processed (PMP) YBCO with different oxygen con-
tent and melt-textured YBCO with an enhanced fishtail effect. Bi2223 tapes'show
2D flux creep behaviour. Whereas in fully oxygenated YBCO 3D behaviour is
obtained, a tendency towards 2D is. found if the oxygen content is reduced or a
pronounced fishtail is present.

In the Shubnikov phase of a superconductor flux lines arrange themselves in a way,
such that the Lorentz force, which drives the flux lines into the material is on every point
in equilibrium with the pinning force. This equilibrium defines the critical state [1]. As
Anderson [2] pointed out, a possibility exists for flux movement away from this critical
state, because of thermal activation at nonzero temperatures. According to Andersons
theory of flux creep *flux bundles’ jump over pinning barriers with a rate according to an
Arrhenius law v = v exp(—U/kT), where v is an attempt frequency and U the effective
activation energy, which increases monotonically with time, leading to a logarithmic
time dependence of M (). In its simplest form [3] U is given by U = Uy — |F|V X where
F is the driving force, V' the flux bundle volume and X the hopping distance or pinning
length. For U/ 3> kT the deviation of the system from the critical state is small. Then
|F| is equal to the elementary pinning force F, = J.B and the effective pinning barrier
is given by Uy = J.BV X. Whereas from measurements of the critical current density
Je only the relation Us/VX can be deduced, the measurements of the time decay of
the magnetic moment allows in principle to determine Uy and VX independently.

By the flux diffusion equation [4] 8B/0t = V[BXvgexp(—U/kT)] (B is the local
field), the logarithmic time dependence of the magnetic moment follows under the as-
sumption U 3> kT. This condition is fulfilled for classical superconductors, but in high
temperature superconductors U is normally much lower, because the coherence length
€ is much smaller and kT is very large for temperatures near T.. Nevertheless numer-
ical calculations of the flux diffusion equation [5] show that 90% of the relaxations in
high T, superconductors are expected to be also logarithmic. The simplification, when
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assuming only one barrier height can be overcome by taking into account a distribution
of activation energies [6]. Also the ansatz of a linear U(J)-relation is very crude, be-
cause it implies a V-notch like shaped pinning potential. For physically more realistic
potential shapes, nonlinear U(J)-relations are always the consequence. It was shown
[6], that for a wide variety of different shapes U ~ Up(1 — J/Jmaez)" with3/2< n < 2is
a good approximation. Jy4, is the maximum current density which pinning potential
can sustain in the absence of thermal activation. U, is the true pinning well height.
The Anderson-Kim relation is described by the tangent on the real U(J)-curve at that
current density, which corresponds to the momentary measuring conditions. There-
fore large differences between the linearly extrapolated Us-value and the real pinning
potential barrier height U, may appear.

As pointed out by Maley et al [8], the shape of the U{J)-relation can be determined
by plotting —T'In |[dM (t)/dt} + CT against M;,., which is related to J. via Beans for-

mula [1]. The parameter C follows from C = In{H,10X/2nd), where d is the thickness -

of the sample. The appropriate C value, which is assumed to be temperature indepen-
dent, follows from the condition, that all points have to lie on a smooth curve. The
results do not depend very much on C, because it is only a logarithmic correction term.
The smoothness can be reached only in the low temperature region, because at higher
temperatures a change in the pinning well height U has to be taken into account. Tin-
kham [9] has proposed, that the temperature dependence of the pinning well height
should be governed by the temperature dependence of those parameters, which are fun-
damentally related to pinning. A Ginzburg-Landau treatment leads to g(T") ~ (1 — t%)
with ¢ = T/T,. Sometirnes better results have been obtained by using t = T/ T, [10],
where T;,, is the irreversibility temperature. A third possibility is to use a value for
C, obtained only from the fit to the low temperature regime (T < 15 K). g(T') is then
determined from the constants, which are necessary to bring the relaxation curves for
all other temperatures on a smooth curve.

A logarithmic U(J)-dependence was proposed from the analysis of resistivity mea-
surements for a variety of different samples {11]. A more general equation was suggested
by Feigel’man et al [12] on the basis of the collective pinning theory, where the pinning
on randomly distributed weak pinning centres is discussed by taking into account the
elasticity of the flux line lattice. Because of the small coherence length (£), tiny defects
(e.g. oxygen vacancies, dislocations) are effective pinning centres. This theory predicts
for J « J. an inverse power law U = U;(J/J:)"#, where U; is the activation energy
for J = J. and the exponent p is dependent on the dimensionality and the partic-
ular flux creep regime. An interpolation formula for the whole J region is given by
U = U;[(J./J)¥ —1], where for p = —1 the Anderson and for g = 0 the Zeldov equation
is obtained. In the case of 3D pinning p = 1/7,3/2 and 7/9 is expected [12] for pinning
of single vortices, small flux bundles (sfb) and large flux bundles (Ifb), respectively.
If £ is smaller than the distance of the superconducting layers, flux decouples into so
called pancakes and 2D flux creep takes place. In that case p = 9/8 (svc) and 1/2 is
proposed [13,14] for single vortex (svc) and collective vortex creep (cuc).

There are two possibilities to analyse the U{J)-curves in terms of the collective
pinning theory: i) to fit them by the interpolation formula ii) to do it graphically by
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Fig.1 U(J)-relation for a Bi2223-tape mea-
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plotting In(U) vs In(|Mirr[). In the first case the full J region can be covered, but in
the fit g is constrained to be independent of temperature. Therefore a fit may lead
to wrong p values, when u depends on the current density. This can be checked, if
the fit is performed for different temperature intervals. In the graphic representation
In(U) vs In(|Mirr|) p appears as the slope on the curve, according to the invers power
law. This method has the disadvantage, that it is only applicable for current densities
J < J,. One can assume that this condition is fulfilled in most of the temperature range,
because due to the small sweep rate used for the measuring field the critical state is
never reached. The best proof for this assumption is fitting the low temperature regime
by the interpolation formula and comparing the obtained exponent g with the slope
obtained from the graphic analysis. If they are equal, the condition J < J. should be
fulfilled.

In the following, examples for such analysis of the measurements of the time depen-
dence of the magnetic moment performed in a VSM on three different textured high
T, superconductors are given. In Fig.1 the U(J)-curves for a Bi2223-tape are shown in
a double logarithmic representation for three different fields applied perpendicular to
the tape surface. For Bi-superconductors a 2D behaviour is expected, because of the
large distance between the CuOj sheets, which is larger then the coherence length in
c-direction. In that case theory predicts g = 9/8 if the pancakes are moving indepen-
dently, and p = 1/2 if they creep collectively. The border between the two regimes is
reached, if the transverse coherence length R. ~ (css€as/ J.B)!/? (with the shear mod-
ulus cg = AmW\Atov@G — 8%), b = B/B. and g the coherence length in ab-direction)
becomes larger than the vortex lattice spacing ao ~ (¢o/ B,)'/2. For single vortex creep
the activation volume V should be smaller than or equal to the one of a single pancake
Voe ~ als (s is the distance between the CuO; planes). V can be obtained from an
analysis in terms of activation energy distributions where the relaxation time 7 is re-
lated to V by 7 = 2uokT/(2m1oV B2). Both regimes are observed in the measurements
ﬁﬂm.s. The extreme large p-value at low temperatures may either be caused by the
fact that the condition J < J. is not fulfilled, or by the influence of quantum tunnel-
ing effects. The change from single vortex creep to collective vortex creep is shifted
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Fig.2 U(J)-relation for powder-melt-processed (PMP) YBCO samples with T, = 92 K (a) and.
62 K (b) measured at 3 T; C = 15, g(T) = 1 - (T/T:)>. P
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Fig.3 U(J)-relation for melt-textured YBCO, determined for B,ljc with g(T) =1~ Aﬂ\ﬂovuh

T. = 88 K. L

to lower temperatures for higher fields (Inset Fig.1). This is expected from the above!
given equations. R, increases with field, because of the decrease of J. with increasing’
B,. :
As a second example we discuss results obtained from measurements of textured
powder-melt-processed (PMP) YBCO samples. As seen in Fig.2 for a sample with 7, =
92 K 3D behaviour is obtained, as expected for YBCO, because of the larger coherence
length compared to the Bi-samples. The system changes from small flux bundle creep
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(o = 3/2) to large flux bundle creep (z = 7/9) with increasing evam—.mmcnm. mﬁ
when the oxygen content is reduced, pinning changes from 3D 6 2D behaviour. This
;s shown in Fig.2 for a sample with T, = 62 K. For B,||(a,b) ¢ is the same as m.: ﬁwm
g2 K sample (only Je is reduced), but for ma.__n u changes from 3/2 (s ‘Q pinning in
3D) at low temperatures to collective pinning in 2D at _042 current mobm;_om.ﬁm,_m.wv.
Therefore a tendency towards 2D behaviour with decreasing oxygen content is found
for these YBCO samples.

In Fig.3 the results for a melt-textured YBCO sample with T, = 88 K are shown.
The sample exhibits a pronounced fishtail effect, which is strongly influenced by the
oxygen treatment. From flux creep measurements it is found, mrﬁ at the mm—a“.érm_.o
the fishtail starts to develop, pinning behaviour changes drastically. Below this mm_.m
the sample behaves in the usual way: 3D pinning of large flux bundles (g = 7/9) is
obtained in the temperature range 30 to 70 K (Fig.3a). At higher fields, where flux creep
is dominated by the pinning centres which are responsible for the fishtail, a change from
single vortex creep to collective vortex creep in 2D with ﬁoavanm».ﬁ.o appears. .menm.mozw
it can be concluded, that in this sample two different types of pinning centres exists.
The ones which can be detected in the field regime where no fishtail appears behave
in the usual 3D way, and the others, responsible for the fishtail effect, lead to a 2D
behaviour of flux creep.

In conclusion, the investigation of the time dependence of the magnetic moment 1s

an important method to get detailed information about the mechanisms of flux pinning
in high temperature superconductors. For the analysis several methods of different
grade of complexity exist, which all have various restrictions. But a combination of the
different analyses lead to physically reasonable results.
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