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A method for step application of binomial expressions, containing the Kaneyoshi
differential operator, is introduced. This method substantially simplifies com-
putations in one- and two-spin cluster effective-field theory approximations for
arbitrary number of neighbours. As an example the critical temperature of the
site-diluted spin-1 Ising model is calculated. )

1. Introduction

Over the last fifteen years the properties of magnetic systems have been studied partly
by a method proposed by Honmura and Kaneyoshi {1]. The method is based on using of
the exact Callen’s identities [2] for a single spin and averaging via differential operator
technique. Later, Bobak and Jas¢ur [3] generalized the method for the case of pair
neighbouring spins and then also utilized differential operator technique. Both one-
and two-spin cluster formulations lead to substantial improvement over the standard
mean-field theory. Moreover, the differential operator method has been successfully
used in developing of the effective-field renormalization group approach [4-9].

In all cases the differential operator technique and the full decoupling for thermal
average of spin-variable products lead to the evaluation of expressions

(1)

mﬁ.ﬁ.?o%?bﬂ.:wmmnr?b&“ m; q;p; ... if(2, o 2i,.0) all oo’
: ¢ =

1
where the operator F; is as a rule of the binomial form (a + mb). D; = 8/dz; is the
differential operator, m = {(Sk))c, ¢ = ({52)) are both thermal and configurational
average of Ising spin variables and their powers, p represents for the site-diluted systems
the concentration of magnetic atoms. z; is an integer, dependent on the coordination
number of the studied structure,
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is the temperature parameter and J; stands for the exchange interaction between spins
in ith equivalent positions.

The conventional attempt to expression (1) is to calculate whole operator []; F;
and then to apply it to the function f(z,...,z;,..). This attempt, however, becomes
rapidly very tedious in treating more complicated problems, such as problems with
higher coordination number (z > 4) or higher spins, problems with next-nearest neigh-
bour interaction and in general also'the applications of two-spin cluster approximation.
The main aim of this work is to show how we can avoid this shortcoming.

2. Step Application of F;

The essence of our method is to evaluate each operator (F;)** (with moderate z;) inde-
pendently. This evaluation gives in (1) terms
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At this stage the problem is already possible to solve by using a computer. For that

purpose we need to calculate the coefficients c, and cj that satisfy the following relation:
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As far as we put the factor 1/2 in the front of the sum, we must be carefull with the c§

which occurs in the sum one time only.

3. Examples. Critical Temperature of the Site-Diluted Spin-1 Ising Model
3.1. Two-Spin Cluster Approximation for z = 4

For this problem the following equations can be obtained:

m = p*[Fe(Ds, m, ) Fy(Dy, m, q)F " f(z, y)ls.y=0 + p(1 = p)[Fo(Dz, m, )] fo(2) |ao
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For details see {7]. Here

Fi(D;,m,q) = [(1 — q) + g cosh(D;t) + msinh(D;t)] (8)

and functions f(z,y), g(z, y}), f2(z), g2(z) will be given below.

oy ¢ =-c,, c5=0. (5).

Computational aspects of the differential operator for Ising Model 107

The second-order phase transition line is defined by :B; m — 0 and it is determined
by the relation

= 312p°A2(t, ) A (2, 9) By (1) f (2, Yl y=0 + P(1 — P)AR(L, ¢) B2 (1) fo (@) em0]  (9)
where t is the critical temperature parameter {2) and | |
g =P [A:(t, ) Ay (t, Pg(2, Yo =0 + P(1 = P)A2(L, 9)g2(2) om0, = (10)
with operators
Aj=(1-q)+qcosh(Dit),  B;=sinh(Dit) i=zy (1)
and with functions (see[7]):
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9(z,y) = gi(z,9)/folz,y)
fo(z,y) = 1+42[e*cosh(z +y) + e ' cosh(z — y) + cosh z + cosh y] (12)
fi(z,y) = 2e’sinh(z + y) +sinhz +sinhy
g1(z,y) = 2[e*cosh(z +y) + e~ cosh(z — y)] + coshz + coshy
2sinh z 2coshz
fa(=) = 14 2coshz 9a(®) = 14 2coshz’

Using the method, given in Section II one finds explicit form for the equations (9) and
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3.2. Two-Spin O_Gmamu >ﬁm§oxm~=mnmo= for z=6

From equations (6) and (7), that are valid in this case, we ong the mo:os::m expres-
sions : : '
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In both cases the concentation dependence of the critical temperature (or the curve ¢~1
vs. p) can be immediately calculated from (13), (14) for z = 4 and from (15), (16) for
z = 6, respectively.

The transition temperature decreases with decreasing p and reduces to zero at the
critical concentration p.. We received ¢! equal to 2.1491 and 3.4995 at p = 1 {(pure
Ising model) for z = 4 and z = 6, respectively. The critical concentration p is 0.4069
for square and 0.2725 for simple cubic lattices.

4. Conclusions

In this work we have shown how to simplify tedious algebraic calculations in the frame-

work of differential operator method. From the examples presented in Section III we
can see that the increasing coordination number z has the minimal effect on the growth
of calculations, except the coefficients ¢ and ¢*. The present method completely avoids
operations with many terms in sums and consequently allows to apply differential op-
erator method to physical problems that are practically untractable by another way
[4,5].

In Tucker et al. [10] the effective field equations for Ising model having all possible
single-ion and nearest-neighbour pair interactions are derived for all spin values from
S =1/2to S =5/2. Our method represents an alternative approach to evaluation of
a set of coupled equations (23) from [10] for single-site cluster theory. It is applicable
to two—site clusters and bond diluted Ising systems [5] as well. On the other hand, for
single—site clusters, our method is much less general than that of Tucker et al.
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