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The elastic scattering differential cross-section and the reaction cross-section are

calculated for 2C - 12C (E/A =~ 85 MeV), 0 - '2C (E/A = 94 MeV) and
a - '2C (E/A = 342.5 MeV). The high-energy double-folding optical potential
approximation to the exact nucleus-nucleus multiple scattering series derived by
Wilson is used. The Pauli correlation effect is considered. This folding approach
is applied to spherical and deformed target nuclei. The projectile is considered to
be spherical in the two cases. Introducing the Pauli correlation effect improves
the agreement at large angles. Considering the target as a deformed nucleus leads
to the best agreement.

1. Introduction

In the last few years a large amount of experimental data has become available in
the field of heavy-ion grazing collisions at intermediate energies, such as elastic and
inelastic scattering, stripping and pickup reactions, and spin and isospin exchange.

The study of the elastic scattering is the simplest approach to test the nucleus-
nucleus interaction. The optical model potential between two nuclei serves as a basic
theoretical tool in describing elastic scattering as well as more complicated reactions.
The most famous methods for calculating the optical potential are the phenomeno-
logical Woods-Saxon, the proximity, the semiclassical, the model independent, the self
consistent, the energy density and the double folding model.

At very high energy, a general multiple scattering theory of composite particle has
been developed by Wilson [1], in which the transition amplitude is derived in terms of se-
quences of two body scattering and free peojectile-target propagator. The series reduces
to the usual Watson’s [2] multiple scattering series when the projectile is elementary.
Wilson and Townsend [3] used the multiple scattering series to derive the approximate
optical model scattering series. The double folding potential is obtained by folding the
energy dependent free nucleon-nucleon interaction with the densities for both projectile
and target. Townsend et al. [4] generalized the model to include the Pauli correlation
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effects in order to investigate the geometrical nature of high energy nucleus-nucleus
reaction cross-section. They found that the Pauli exchange correlation effects are unim
portant when determining the total and absorption cross-sections. Bidasaria et al. [5]
calculated the elastic scattering, the reaction and the total cross-sections for **C - 12¢
at energies from 200 to 290 MeV. They used the optical potential derived by Wilson in
the context of the eikonal phase shift. The minor disagreement between theory and ex:
periment was attributed to uncertainties in the real part of the forward neutron-proton
scattering amplitude. The remaining discrepancies were attributed to the negligence of
the Fermi motion, the off shell effects and the Pauli correlations. However, limiting th
experimental slope parameter values to those appropriate to diffractive scattering has
improved the agreement between the theoretical calculation and the experimental dat
for 12C - 12C elastic scattering in the energy range 200 - 300 MeV [6]. This showed
the validity of the eikonal expansion at this low energy. Owing to the simplicity of this
model, it is clearly worth assessing the applicability of this method to intermediate e
ergy heavy ion scattering processes. Also, in this method the nucleus - nucleus collisio
could be described by means of the same underlying theoretical framework. So, it could:
be tested in a wide variety of collisions.

It is well established that in many cases, such as nuclear rainbow scattering, observed:
for a - particles and some light heavy ion or the elastic scattering data for 10 and 1%C:
at intermediate energies 7], where the data are sensitive to the real optical potenti
over a wider radial domain, the folding model failed to give a good description to the
data. Therefore, some modifications of the folding model have been made to eliminate.
such a deficiency of the folded potentials. One of these approaches is to impose on the
widely used M3Y effective NN interaction an explicit density dependence, the DDM3Y
interaction. Another is to treat correctly the single nucleon knock - on exchange effects
arising from the Pauli principle. Also, the coupling to the collective states could im’
prove the theoretical calculations using the folding model to fit the experimental data
Ohtsuka [7] showed that the correct treatment of the exchange potential leads to a more
realistic shape of the real optical potential calculated for 10 and 2C scattering data wﬁ%
intermediate energies. 12C - 12C and !0 - 12C reactions were investigated by Branda
and Satchler [8] using a double folded potential based on the density and energy depen;i &
dent DDM3Y interaction. It is well known that the origin of the density dependence.
the effective interaction comes mainly from the Pauli principle effect in the overlapping'
region and from the energy denominator of the Bethe - Goldstone equation [9]. In these
calculations [8] a normalization factor to the real potential was used to obtain the mm
with experimental data. 5

Kobos et al. [10] verified that the coupling to the 2% state of 12C could be reproducec
quite accurately by a small change (~ 5%) in the strength of the absorptive potentia
12G . 12C at E/A ~ 85 MeV was investigated using the complex reaction matrix [11]:2,
[13]. The coupling to the 2+ and 3~ collective states were included in these calculations}
which gave a good agreement with the experimental data. They obtained a.negativé
sign for the deformation parameter Bag, which reflects the fact that *2C nucleus has an
oblate shape and this was favoured by their calculations over a positive sign. Faessler
et al. [13] have investigated the same reaction in the energy density formalism and
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including the coupling to the collective states. The comparison of these results with the
Q%maamsﬁ& data showed that the inhancement of the imaginary part in the optical
_uonous@_ improves the agreement with experimental data, whereas the repulsive contri-
bution to the real part is unfavourable to explain the experimental cross-section. This
reaction was analyzed [14] in the optical and Glauber models. This analysis showed
that the reaction cross-section in ion-ion scattering in this intermediate energy region
is much smaller than that at lower energies. Consequently, the ion makes a much closer
approach than that at lower energies, which means that the elastic scattering measure-
ments at 85 MeV/n allow to determine the ion-ion potential down to a much smaller
inter-nuclei distance than at low incident energies, this has been confirmed later for the
160 - 12C system at 93 MeV/n [15]. This shows that at this intermediate energy the
nuclei increase the overlapping and Pauli correlations become important. Since, it was
found that [16], when the Pauli principle was considered, the potential turns out to be
more repulsive. This effect could be further traced to the increase in kinetic energy
of the separate nucleons that take place when the bombarding energy is low enough
to cause overlapping of the Fermi spheres associated with each ion. a—!2C system at
1370 MeV was investigated using Glauber theory [17], [18] and the effects of nuclear
correlations were considered, also the coupling to the collective states of *2C - nucleus
[17] was considered. Good agreement with experimental data was obtained for small
scattering angles.

Our interest in this work is to test the validity of the optical potential derived by
Wilson in the context of the eikonal approximation to calculate the elastic scattering
differential cross-section and the reaction cross-section at intermediate energies. Also,
we would like to test the effect of introducing the Pauli correlation effect and considering
the target nucleus as a deformed nucleus on the calculations of the elastic scattering
reactions.

In section IT we describe our formalism, in which the nucleus-nucleus optical po-
tential is introduced with and without the Pauli correlation effect. The deformation
of the target nucleus is presented. And finally the density distributions considered in
this work are given. Section III gives our results for the optical potential calculated
with and without the Pauli correlation effect for 12C - 12C, 180 - 12C and a—12C. Our
results are compared with the phenomenological optical potential. Then, the elastic
scattering differential cross-section are presented and compared with the experimental
data for 12C - 12C, 160 - 12C and a—!2C. The effect of the Pauli exchange correlation
function and considering the target as a deformed nucleus are studied. Then, the re-
sults of the reaction cross-section are presented and compared with other theoretical
and experimental results for 1C - '2C. Finally, the conclusion is given.

2. The Formalism

2.1. The Optical Potential Model Including Pauli Correlation Effect

The nucleus-nucleus optical potential may be written as [3]

Vope (X) = \»wmﬂ\mmwﬂs?ﬂv\%@mla+@+3V:PS (2.1)
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where Ap, Ar are the mass numbers of the projectile and the target, respectively. pp
and pr represent the projectile and target single particle densities. t(e,y) is the two
body transition amplitude averaged over the constituent particles, e is the nucleon
energy in the two body center of mass frame and y is the two nucleon separation
distance. t(e,y) has been derived from the Fourier transform of the two body scattering
amplitude [19]. We use the usual parametrization of the two body scattering amplitude:

flea) = ENZ (@t i) expl~ B /2) (22)

This form of the scattering amplitude yields
t(e,y) = —(e/m)o(a+i)(2nB) ™/ exp(—y*/2B) (2.3)

where ¢ is the momentum transfer, Ky is the wave number of the incident nucleon, m
is the nucleon mass, ¢ is the average nucleon-nucleon (N N) total cross-section, o is the
average of the ratio of the real to the imaginary parts of the NN forward scattering
amplitude and B is the slope parameter of the NN elastic scattering differential cross-
section.

Equation (2.1) does not include the correlation effects due to Pauli exclusion prin-
ciple. Considering correlation due to Pauli principle, equation (2.1) may be written as

[20]
,Sixv = ApAr \ d3rrpr(rr) \ Bypp(z +y+rr)tle,y)[1 — CW)] (2-4)

where the Pauli correlation function in the Fermi gas model is given by [20]

1

Cly) ~ - exp(—K3y*/10) 25)

4
with
Krp =136 fm™".
2.2. The Elastic Scattering Differential Cross-Section

The elastic scattering differential cross-section for symmetric system (*2C - 12Q) pm
given by :
7a(0) = |£(O) + f(x — O)° (2:6)

while for non-symmetric systems (*°O - 12¢3 and a—12Q) it is given by

ou(®) = f©)F @7

The elastic scattering amplitude considering the Coulomb effect is given by

F(©) = fc(©) + (2ik) ™ (2L + 1) exp(2in.) (St — 1)PL(cos ©), (2.8)
L
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fc(©) .mm the usual point charge Coulomb amplitude, 7, is the point charge Coulomb
scattering phase shifts and Si, is given by

St = exp(2#6) (2.9)

where &, is the complex nuclear phase shift. Considering the correspondence between

the ncwuaw_ expression and the eikonal approximation, the reaction sross-section is
determined from:

oR= \ da%[1 — T ()] (2.10)
where T'(b) is given by [21]
T(b) = exp(—2Imx(b)) (2.11)
with
-1 [*>
x®) =5z | U(b,2)dz, (2.12)
U(b,Z) = [2mApAr(Ap + A1) Ve (b, 2) (2.13)

and K is the incident wave number.
Comparison of relation (2.10) with the usual quantal relation:

. oo
oR = WINMUEL 1)1 -15L1») (2.14)
L
with
1
Kb=L+ 3 (2.15)
we get
ISLI? = T(b) (2.16)
From this, the complex nuclear phase shift is obtained from
5 = 1
L = 5x0) (2.17)

y In case of .wwmé »o_.ﬁ collisions there is a strong Coulomb field, which causes a distor-
mou to the original mmw.umn.no_,? especially at energies not exceeding 100 MeV per nucleon.
or the Coulomb distortion of the trajectory, L can be related to b by the relation [22)

ﬂ_
Kb=n+[r"+(L+ )% (2.18)

where 7 is the Sommerfeld parameter,

n= ZpZre?/hv.
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2.3. The Target Deformation

The scattering of a spherical projectile nucleus from a deformed target nucleus will -
be studied. The density of a nucleus with an axially symmetric deformation may be

written as [23]

d
pr = por{r) — q.lbclm“.@p MU .WMMu\hcA®~9v (2.19) -
L

5

where por(r) parametrizes the spherical part of the target density distribution and Bf% .
is the deformation parameter of the target nuclear matter distribution. The quadrupole

deformation is considered only, therefore the value of L is restricted to 2. ;
To calculate the deformation parameter Bog let us consider the transition density

pur(r) = Bt L) (2.20)

and for L = 2, :
p &boﬂ.?.v :

pir(r) = By r————=. (2.21)

dr

The normalization constant BS7 is determined by assuming that the proton transition
density is (Z7/Ar) times the mass transition density and choosing Bag to give the
measured value of B(E2) for the target nucleus [24], i.e.

\$§§k§u§§3EE%N (222)

where A7 and Zp are the mass number and the charge number of the target nucleus, -

respectively.

2.4. The Density Parameters

In our calculations we used nuclear single particle matter densities which are ex--

tracted from the charge density. Two forms of the charge densities are used:
a) A harmonic oscillator charge density.
b) A Gaussian charge density.
a) A harmonic oscillator charge density.

The harmonic well charge density has the form [25]

pc(r) = poll + v(r/a)?] exp(—r?/a?) (2.23

The constants a and v are fitting parameters to electron scattering data [25] and pq is.

determined by the normalization condition

.\}lmﬂ =1 (2.24)
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Eia Opp | pp bpp—2 Tpn | Qpn bpn—2 ref.
{MeV) | (mb) {GeV/C) | (mb) {(GeV/C)

100 33.2 | 1.87 | 16.951 72.7 1 9.246 34
344 34.0 | 0.60 0.44 27.0 0 2 35

Table 1. The parameters of the NN amplitude that are used in the calculations reported here.

The matter density is extracted from the charge density by the method discussed in
ref. (20), which gives for the harmonic well matter density

3 2 2,2
__ poa mw _ 3va va‘r %, il
pm(r) = 37 AH._- 2 832 + 165 v exp{—r*/45%) (2.25)
with
S? = m — @
4 6

where pp is the proton rms radius and is equal to 0.87 fm.

b) A one term Gaussian density.

The Gaussian density has the form

pc(r) = po mx.glau\%v (2.26)
where
po = 1/(av/m)? (2.27)
and
a=(r?)"? (15)7172 (2.28)
The corresponding matter density is
3
a
pm(r) = mﬁwm.w exp(—r%/45?)
with |
2 2
2_ % D
S=T7%

3. Results and Discussion

SH: this section we present our results for the elastic scattering of 12C - 12C, %0
- 12C and a—'2C at energies 1016 Mev, 1503 MeV and 1370 Mev, respectively. 12C
and 16Q are described by harmonic oscillator charge density. For a—12C reaction, a one
term Gaussian matter density is considered for a-particle and harmonic oscillator matter
density for 12C nucleus. The parameters for nucleon-nucleon scattering amplitude which
are used in this calculations are listed in table (1}.
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Fig. 1. The real (a) and the mEmmmbMJ. {b) ‘parts of the optical potential for '2C - '2C elastic
scattering at 1016 MeV (dashed line), compared with phenomenological potential (dashed
dotted line). The solid line represents the calculations including the Pauli correlation effect.
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"Fig. 2. The same at Fig

. 1. but for %0 - 12C at 1503 MeV.

@ @)
w\owhanb @H\u hm .mwup @w\w N\n mw.ua
[fm] | & | [fm] | [fm] {fm]
HMO - HMO 5.6 | 67 | 5.65 | 5.8 | 69.5| 5.85 Table 3. The strong absorption
O-12C| 6.1 | 88 (6.15]| 6.2 | 90.0 | 6.25 parameters: (a) C(y) # 0 and
a-12C | 35 |42 (351 36 | 43.0( 3.61 (b) C(y) = 0.

Reaction Vv rr ar w 5 a; ref.
(MeV) | (fm) | (fm) | (MeV) | (fm) | (fm)
2G-T2C [ 200 [0.550 {0.980 | 43.11 [ 0.990 | 0.530 | 28
160_12¢ | 120 |0.748 | 0.893 | 27.40 | 1.050 | 0.723 | 15
a-12C | 65.58 | 0.733 | 0.683 | 229.8 | 0.733 | 0.683 | 36

Table 2. The phenomenoclogical optical potential parameters.

3.1. The Optical Potential Calculations

The real and the imaginary parts of the optical potential for 2C - 12C at 1016 MeV -
with and without Pauli correlation effect are shown in Fig. 1. The same calculations for -
180 - 12C and e - '2C are shown in Fig. 2. and 3., respectively. Our calculations of the
optical potential are compared with the phenomenological potential whose parameters *
are given in Tab. 2. We can notice from Fig 1.-3. that, introducing the Pauli correla-
tion effect for the three reactions, improves the agreement with the phenomenological

potential. Also, we can see that the potential becomes shallower by introducing Pauli
correlation correction. This was justified before by Hernandez and Moszkowski [16].
Comparing the potential obtained for 12C - 12C with that obtained for 160 - 12C, we
find that the real part of 'O - 12C optical potential is more attractive and its imaginary
part is more absorptive.

The strong absorption radius is calculated for the three reactions using the trans-
Parency function, T(b) [21]. A typical representation of T'(b) is shown in Fig. 4. for
%C - 12C reaction. We can notice from Fig. 4. that the lower partial waves are totally
absorbed. The T'(b) distribution can be used to define the strong absorption radius,
Ry a quantity which characterized the system with respect to the strong absorption.
Ry, is the distance of the closest approach on the Coulomb trajectory associated with
the grazing partial wave L, for which T'(b) = 1/2.



50
L (a) Real SN © (b) Imaginary
~o~ nl n.| //
B o \
= // C \
I r \
r - \
10! - /
g g
£ i
\
0 —
w00 | - ,/
: - \
r T \
r i \
L N :
107! | 1 \ I 1
2 “ [ 2 4
£ (fm)

T(b)

b (fm)

M.Y.M. Hassan et al

Fig. 3. The same as Fig. 1. but for o

- 12 at 1370 Mev.

¥

oAl

Fig. 4. The transparency function T(b) calculated

for 2C - 2C system at EJA ~ 85 MeV. Solid linet

C(y) considered. Dashed line: C(y) neglected.

The strong absorption impact parameter by;y, for which T'(b)

grazing partial waves Lg as [26]

N»w@iu = N\.Q +

1
2

= 1/2 defines th
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Fig. 5. The elastic scattering differential cross-section for *C - '2C system at E/A = 85
MeV (dashed line). Dashed dotted line represents the inclusion of Pauli correlation effect.
Solid line represents the calculations considering Pauli correlation effect and the deformation
of the target nucleus.

Fig. 6. The same at Fig. 5. but for 0 - '>C system-at E/A = 94 MeV.

Reaction \VI/E
C(y)=0 | C(y)#0
2C-T2C1 0240 | 0.190
160 .HMNO 0.180 0.146 Table 4. The ratio |V|/E for all reactions considering
a-“C 0.047 0.035 C(y) and neglecting it.

Hence the strong absorption radius can be calculated from:

172

1
Ryo=|n+|n*+ Th + mv | K (3.2)

where 7 is the Sommerfeld parameter. The values of b; /2» Lg and Ry, for all the
Teactions considered are given in Tab. (3 a,b) with and without Pauli correlation,
Tespectively. From these tables, we can see that by introducing the Pauli correlation
effect, the strong absorption radius decreases slightly.

From figures (1 - 3) and tables (3 a,b) we can see that our potentials have nearly
the same values as the phenomenological potentials at the strong absorption radius.
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section. The condition for applying the eikonal approximation is contained in the rela-
- tion [26]
g mmmﬁjw 102 s A WVI/E<1 (3.3)
W..m w mmw \m)w,.w This ratio is calculated for the potentials shown in figures (1 - 3) and is listed in table
& ° ...%_ = m\m\ 2 (4). We can see that the condition (3) is justified for all cases considered.
S -+
x ol® . : 3.2. The Effect of the Pauli Correlation and the Deformation of the Target
—° Fie 1 Nucleus on the Elastic Scattering Differential Cross-section
)
~o
mn.w olo The elastic scattering differential cross-section is calculated for all the above reac-
g _MA E|S tions with and without the Pauli correlation effect. Also, it is calculated taking into
gl account the Pauli correlation effect together with the deformation of the target nucleus.
Sla _ln 10° The choice of B(E2) = 42e? fm* for 12C nucleus [24], [27] yields a deformation param-
o Sl eter Byo = £0.447545. We found that the negative sign of the deformation parameter
] leads to a better agreement with experimental data than the positive sign, which was
T Mu# M, ) o m confirmed by Faessler [12]. So, we used the negative sign of the deformation parameter
£z &= 23 3 in our calculations. All our theoretical results are compared with experimental data
= Wil [15], [28], [29].
e oo © o 3 Figure 5. shows the elastic scattering differential cross-section for 12C - 12C system,
s Elg ol o calculated with and without Pauli correlation effect and considering the Pauli correla-
- tion effect together with the deformation of the target nucleus. We notice from this
- %ruwxz - o - figure that the three types of calculations give a satisfactory agreement with experimen-
Hel Bl =z % 102 tal data up to Ocm = 9°. Introducing Pauli correlation effect improves the agreement
= O & 3 with the experimental data at and beyond the fourth maximumi.e. ©.,, > 9°. Reliable
m - o agreement between the theoretical and the experimental results is obtained when the
o 1= ElE e B / ¢ Pauli correlation effect together with the deformation of the target nucleus is consid-
gL I° i . ered. Fig. 6. is the same as Fig. 5. but for 50 - 12C elastic scattering. We can
Pu « o8 T g see from this figure that all our calculations fairly describe the experimental data up
B B8 g 107 4 Y L i to @.m =~ 8°. Introducting Pauli correlation effect improves the agreement with the
s 10 15 20 ! em g P greemen
R oo (dereen) experimental data for ©,,, > 8°. However, it gives deeper values at the first minimum.
I ol B ) . " ] The best. mmwooaoz.a with experimental mmﬂm is og.m.Eom U%. taking the deformation of
va,\ F Ele == Fig. 7. The same at Fig. 5. but for a - **C the target nucleus into account together with Pauli correlation effect.
© system at 1370 MeV. We can see from the above results that three is slight disagreement at large scatter-
~ ; Table 5. The nucleus-nucleus reaction cross ing angles. It was found that for the projectiles of mass number (A > 12), the scattering
= E el & section compared with other calculated results Processes are dominated by strong absorption effect which gives rise to strongly diffrac-
: [21] and with experimental results [28], the ex- tive angular &malvcaou. [30]. This phenomenon [24] can be quantitatively expressed
5 % PT [& perimental result in paranthesis was extracted by the ratio of the imaginary to the real well depth of the optical potential, which is
g : T from optical model analysis. The experimental found to be mvoca .H \w mow light projectile {4 < 12) and larger than 1 for *2C and !€0.
@ Ny s % nucleus-nucleus op was extracted from the opti- In our case this ratio is given by 1/a It is about 0.7874 for '2C - 12C and 160 - 12C cor-
cal model analysis [8], [21] (in parentheses) and fesponding to energy per nucleon 100 MeV. However, the elastic mmmgmasm .nommamnmm
the rest from direct measurements [28], [37]. - Corresponds to energies per nucleon 85 MeV and 94 MeV, respectively, while a set of
NN parameters at E/A = 85 MeV for '2C - 2C and 94 MeV for 160 - 12C may lead to
a better agreement with the experimental data. To the best of our knowledge we did
: Dot find such a set and we used a set of E/A = 100 MeV.
The optical potential is used to calculate the elastic scattering differential cross-
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Fig. 7. shows the elastic scattering differential cross-section for & - 12C at 1370 MeV:
We can see from this figure that all our calculations fairly describe the experimental data
up to Ocm ~ 8°. Considering Pauli correlation effect improves the agreement between
theoretical and experimental data at the first and second maxima. Introducing the
Pauli correlation effect together with the deformation of the target nucleus gives less
satisfactory results, since the position of all the maxima and the minima are shifted
towards smaller angles. . e

We can conclude that the high energy double folding potential derived by Wilson
could describe the elastic scattering differential crossection for the three reactions con-
sidered in this work, and it could be used at intermediate energies. Introducing the
Pauli correlation effect improves the agreement with the experimental data at large an-
gles for the three reactions. Considering the deformation of the target nucleus together
with the Pauli correlation effect produces the best fit to the experimental data for 12G
-12C and 180 - 12C systems. But worsen the agreement for o - 12C scattering. We om.m
also notice from Fig. 5. - 7. that the best agreement obtained at large angles for 12C -
12¢; system, where the two nuclei is of the same size. ‘

Comparison of our results with the previous work, shows that, we attain bett
agreement for o - 12C than that of ref. [31], especially for © > 10°. Comparison SE__ :
the same work for 12C - 12C and 60 - 12C, reveals that the overall agreement is also -
better. In general using the Pauli correlation effect gives much better agreement at -
large angles. And the calculations considering the deformation of the target EEF:T
improves the agreement even better than those authors [31] who used more movEmEnﬁmﬂ -
density distribution. ) .

The elastic scattering is analyzed taking into consideration the Coulomb &mﬁoa.ﬁwm
of the trajectory. The results obtained are mainly identical with the previous ones .
neglecting such effect. This shows that this correlation is important only in the case om ;
scattering of heavy nuclei >%° Ar [22]. This was justified by Lenzi et al. [32].

3.3. The reaction Cross-Section

The reaction cross-section is calculated for the reactions under consideration usin|
equation (2.10), by considering the Pauli correlation effect and neglecting it. The values
of the reaction cross-section are listed in Tab. 5. together with other theoretical nom::m;
and compared with the experimental values which were extracted from the optical model
analysis. We can see from this table that, introducing the Pauli correlation function’
C(y) into the calculations of the reaction cross-section gives better agreement with the
experimental data than those calculated neglecting C(y) which agrees with the results
of the elastic scattering.

The strong absorption impact parameter, by/o, provides good estimate of the e’
action cross-section mb2 /2 These results are shown in Tab. 5. together with other:
theoretical calculations [21].

The effect of the deformation of the target nucleus on the calculated reaction cros
section is investigated and the results are shown in Tab. 5. The reaction cross-sections
calculated using the negative deformation parameter give comparable results with the
experimental data.

P
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4. Conclusion

In this work the simple double - folding optical potential proposed by Wilson [3] is
used to calculate the elastic scattering differential cross-section and the reaction cross-
section for nucleus - nucleus reactions at different values of energies. The angular
distribution of the elastic scattering shows a strong oscillatory structure at forward
angles, which corresponds to Fraunhofer diffraction pattern. The oscillatory structure
becomes smooth at larger angles which is one of the characteristics of nuclear rainbow
scattering.

Introducing the Pauli correlation effect, the optical potential becomes shallover and
have smaller values at the strong absorption radius. This gives a better agreement at
large scattering angles when calculating the elastic scattering differential cross-section.
Also, the Pauli correlation effect improves the agreement between the calculated reaction
cross-section and the experimental data.

The elastic scattering differential cross-section calculated using negative sign for the
deformation parameter gives a good agreement for the experimental data.

Our formalism considering the Pauli correlation effect and the deformation of the
target nucleus gives a good agreement for the elastic scattering differential cross-section
of heavy ions. However, better agreement can be attained if one takes into consideration
the following points (corrections):

a) The density used for both the target and the projectile may be considered in a
more sophisticated form such as a Wood - Saxon or a modified Fermi density for
heavy ions. : :

b) The 2% state of the deformed target nucleus is considered in our work and the 3~
is neglected, so in future we can perform this work considering both the 2% and
3~ states of the deformated target nucleus.

¢) The mutual excitation of the projectile and the target was observed [30] and be-
comes relatively stronger at large angles in the calculation of the elastic scattering.
This factor is not investigated in our work, but one can consider both the target
and the projectile to have excited states, i. e. both of them treated as a deformed
nuclei.

d) The transition matrix element t(e,y) can be replaced by another one such as
derived by Love and Franey [33].
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