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Within the optical model potential introduced by Townsend the orientation depen-
dence of the interaction is studied for light nuclei. The elastic scattering differential
cross-section and the reaction cross-section are calculated using this interaction
potential for 1>C - 2C system and 'O - >C system. Deformed harmonic oscilla-
tor charge densities with quadrupole deformations are utilized. Comparison with
other theoretical calculations are presented and discussed.

=, Introduction

The optical model potential between two nuclei serves as a basic theoretical tool
in describing elastic scattering as well as more complicated nuclear reactions. The
most famous methods for calculating the optical potential are, the phenomenological
Woods-Saxon, the proximity, the energy density and the double folding model.

Wilson and Townsend [1] derived an approximate optical model scattering series
based upon the exact nucleus-nucleus multiple scattering series which had been devel-
oped by Wilson [2]. The double folding optical potential is obtained by folding the
energy dependent free nucleon-nucleon interaction with the densities for both projectile
and target. This formulation is fully energy dependent. It includes the effect of the
finite nuclear force, and treats Pauli correlations in an approximate way. This optical
potential was used in the context of the eikonal phase shift and neglecting the Pauli
correlation effect in the calculations of the elastic scattering, the reaction and the total
cross-sections for 12C - 12C system at energies from 200 to 290 MeV [3]. The minor
disagreement between theory and experiment was atiributed to uncertainties in the real
part of the forward neutron-proton scattering amplitude. The remaining discrepancies
were attributed to the negligence of the Fermi motion, the off shell effects and the Pauli
correlations. However, limiting the experimental slope parameter values to those ap-
Propriate to diffractive scattering, has improved the agreement between the theoretical
calculation and the experimental data. This showed the validity of the eikonal expan-
sion at such low energy. The elastic scattering for 12C - !2C system was studied by
different methods and at different values of energy. The Mclntyre [4] parametrization
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of a phase shift analysis performed on high energy heavy ion elastic scattering was used
to investigate 12C - !2C elastic scattering. This fundamental parametrization of the
S-matrix elements provided also a realistic analytical deflection function and allowed
the nuclear rainbow angle observed in alpha- and heavy-ion elastic scattering to be
determined accurately.

The 12C - 12C system was investigated also using a double folded potential based
on the density and energy dependent DDM3Y interaction [5]. This model was used
to investigate 13 sets of elastic scattering data for the systems '°C - 12¢, 3¢ - 12
and 190 - 12C, at laboratory energies between 9 and 120 MeV /nucleon. The density
dependent DDM3Y interaction is a modification of the M3Y interaction, to include
the density dependence specially at high energy [6]. It is well known that the origin
of the density dependence of the effective interaction comes mainly from the Pauli
principle effect in the overlapping region and from the energy denominator of the Bethe-

Goldstone equation [7]. In this model Brandon and Satchler [5] used a complex potential |
consisting of a real part calculated by folding the densities with DDMa3Y interaction and

a phenomenological imaginary part of a Woods-Saxon shape. Good fit was obtained at
all energies using this 4-parameter model even though the quality of these fits is not
quite as good as could be obtained with 6-parameter Woods-Saxon shaped potential.
The energy and density effective interaction was also used to investigate the 160 - 12¢
system by Kobos et al. [8] and Roussel et al. [9]. Kobos et al. explored a significant
modification to the DDM3Y folded potential for obtaining the best fit. They verified

that the coupling to the 2% state of 12C could be reproduced quite accurately by small 5

change (/'5%) in the strength of the absorptive potential.

The complex reaction matrix [10-12] was also used to investigate the 123 . 12( gys-

tem at E/A = 85 MeV. The collective surface vibrational states were included in these
calculations, which improved the agreement with the experimental data. A negative
sign was obtained for the deformation parameter Byo, which reflects the fact that 2C

nucleus has an oblate shape. Faessler et al. [12] have investigated 12 - 12C system :
at energies 1016, 1440 and 2400 MeV, considering the real and imaginary parts of the 7
optical potential between two nuclei calculated in the energy density formalism and the
coupling to the collective states was included. They derived the energy density from 2
the Dirac-Brueckner approach to nuclear matter. Ohtsuka [12,13], furthermore, shoved
that when the relativistic features are incorporated in the Dirac-Brueckner approach -
they make the real part of the optical potential less attractive than that obtained in_
a non-relativistic calculations [13], while the imaginary part was enhanced. The com-
parison of these results with experimental data showed that the enhancement of the
imaginary part in the optical potential improved the agreement with the experimental

data, whereas the repulsive contribution to the real part is unfavourable to explain the
experimental cross-section. Another method based on the Glauber theory or its ”op-
tical limit” was used for the calculation of the '2C - '2C, 160 - 12C elastic scattering.

J.Chauvin et al. [14] extended Karol’s model [15] to describe the elastic scattering of
12C: 120 at energies 300, 360 and 1016 MeV. This model depends on the experimental |
nucleon-nucleon forward scattering amplitude and a Gaussian density for both target

and projectile nuclei. They found that the final formulation of the model is equivalent
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to the optical limit of the Glauber approximation. Their simple calculations gave good
agreement with the experimental data at small angles. Also '2C - 12C reaction at 1016
MeV was analyzed [16] using the optical and Glauber models. The analysis shoved
that the reaction cross-section in ion-ion scattering in this intermediate energy region
is much smaller than that at lower energies. Consequently, the ion makes a much closer
approach than that at lower energies and the data provide more detailed information
on the nuclear structure and reaction mechanism. At nucleon energies [14, 16] of about
85 MeV /nucleon, the nuclei increase the overlapping and Pauli correlations become im-
portant. Using the optical limit of the Glauber theory, Lenzi et al. [17] calculated the
elastic and inelastic scattering in terms of eikonal approach, for a variety of colliding
nuclei (4 < Ap < 40, 12 < Ay < 208) at energy (E/Ap = 30 — 350 MeV). They
obtained a disagreement between experimental data and the theoretical calculations at
large angles for reactions involving '2C nucleus. This disagreement was attributed to
the increase in the nuclear transparency. They found that although the eikonal ap-
proximation becomes more and more precise at higher energies, the larger transparency
increases the sensitivity to the internal part of the nuclear couplings. In this situation
a coupled-channel treatment would be more adequate. The most accurate reaction cal-
culations would use the coupled-channels formalism, and include all states populated
in the collision. Such a calculation would be very expensive in terms of computer time
and memory, and thus it is necessary to simplify the calculation in some manner. So,
in the present work the coupling to the 2% excited state is included by considering the
interacting nuclei as deformed nuclei.  We calculate the elastic scattering differential
cross-section and the reaction cross-section for 12C - 12C system at.energies 1016, 1440
and 2400 MeV. Also, these calculations are performed for 10 - 2C system at energy
1503 MeV. We used the optical potential derived by Wilson {1] including the Pauli cor-
relation effect in the context of the eikonal approximation. Deformed matter densities
with static quadrupole deformations are utilized. In section 2, we summarize the for-
malism used, extending that given by Greiner [ref. 18], Wilson {ref.19], and Hefter [ref.
.MB. The calculations and discussion of the results are presented in section 3. Section 4
1s devoted to the conclusion.

2. The Formalism

2:Z. The Folding Potential for Deformed Nuclei

The nucleus-nucleus optical potential as derived by Wilson takes the form [1]

W(r) = ApAr \&uﬁ.bﬂ?ﬂv \%.S:u? +y+rr)tle, y)[1 - c(y)] (2.1)

Where 4; {i = P,T) are the mass numbers of the projectile and target, p; are the
8round state single particle nuclear densities for the colliding nuclei; t(e, y) is the en-

Igy dependent constituent-averaged two-nucleon transition amplitude obtained from
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scattering experiments, € is the NN kinetic energy in the c.m. frame, y is the N N

relative separation and c(y) is the Pauli correlation function, given by
1
cly) ~ Mmﬁl»w% /10) and kp =136 fm (2.2)
This six dimensional integral (2.1) is calculated for deformed nuclei using the mo-
mentum space method as derived by Walter Greiner [ref. 18]. If the Fourier transform ¢
of a function f(Z) is denoted by f(k), the folded potential is given by: ¢

W(r) = (2m)7° ,\Qmw axglmmﬂmwA+mvmﬂﬂlmvﬁ?u k) Awwv

where _
t'(e,y) =t(e,¥)[1 — c(v)]

i.e. the Fourier transformed integrand reduces to a product of the Fourier transforms -
of the two densities and the transition nucleon-nucleon scattering amplitude. The two
nuclei are considered to have a static quadrupole deformation. Following the same steps
and notations as in Ref. {18], one can obtain W (r, B1, B2) as follows:

W=y W)

il

where ) o [o0 .
w(0,0)= 2 [ akkiokr)?(e, ARG ¥),
0

w(0,2) = w% \ ARk o (kr)i (e, k)LA'SG (k) A'S) (k) Pa(cos Ba)+
A'D (k) ASE (k) Py(cos 1),
we2= 3. WPL@I:AM N mv

1=0,2,4

o0
x\c Ak i (kr)T (e, K) A5 (K) A'SE) ()

2 ,.
x 3 AM 2 v&aa_ﬁmé%& (2.4):

-m 0
m=-2

and

At (k) = bno \ dr'r2pio(r) i (k). (2.5)
0 it

B1, B2 are the two Euler angles. ¢

Using equation (2.4) we can calculate the components of the optical potential W (l1, lg)

Loy
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2.2. The Elastic Scattering Differential Cross-Section

The elastic scattering differential cross-secti i i
P section for symmetric system (12C —!? C) is
oa = |f(©) + f(m - ©) P, (2.6)
while for the non-symmetric system {(**0 —!2 C is given by

cu = |f(O) @2.7)

The elastic scattering amplitude considering the coulomb effect is given by

£(©) = £o(©) + (2ik) ™) (2 + 1) exp(2im)(S; — 1) Pi(cos ©), (2.8)
{

f-(©) is the usual point charge Coulomb amplitude : .
: : th
scattering phase shift, and S; is given by p 7 is the point charge Coulomb

m.N = axﬁﬁwm&v Awmv

where §; is the complex nuclear phase shift, which are obtained from [19]

1
&= mxAS
H. o
x(b) = —5 \. _UW2)az (2.10)
with

U,2) = [2mApAr(Ap +\»HV|JS\Q§ Z) (2.11)

k is incident wave number and W (b, Z) is the optical potential.
2.3. The Density Parameters

We assumed that the intrinsic charge distribution can be described in the form [21]

p(r) = po AH +a AMV v exp(—r?/d?). (2.12)
The constant pp is determined by the normalization condition
\Emvam =1, {2.13)

m.zm,m.mym parameters a and o are taken from Ref. [21].
he density of a nucleus with an axially symmetric deformation, may be written as

[20]

d r
2(r) = poo(r) — 1#: MU BigY10(0, ¢) (2.14)
!
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Fig. 1 The real (a) and the imag-
inary (b) parts of the dominant
multipole components of the opti-
cal potential for three sets of ori-
entation angle calculated for '2C -
123 at 1016 MeV. The dashed line
represents the monopole-monopole
force. The dashed dotted line
represents the monopole-quadrupole
force. The dotted line represents the.
ncm&cvoﬂ?nsw%ﬁowm force. The
solid line represents the sums over all
components. The dashed double dot-
ted line represents Faessler calcula-
tions [13].

where poo(T) parametrizes the spherical part of the nucleus and Byo is the deformation .

parameter of the nucleus matter distribution. To calculate the deformation parameter
Bag, let us consider the transition density ;

dpoo(r)
dr

0

. (2.15)

per(r) = Bior' ™}

oy
The normalization constant Bag is determined by assuming that the proton transi-
tion density is (Z/A) times the mass transition density and choosing Bzo to give the -

measured value of B(E2) for the given nucleus [22], i.e.
\ Apes (r)r+2dr = (A/Z€)(B(ED)''?, (2.16)

where A and Z are the mass number and the charge pumber. The nuclei considered in :
this work are 12C and '°0. The measured values of B(E2), for these nuclei are ,

B(E2) = 42¢* fm?, for '?C,

and v
mﬁmwunw.wm% fm?, for 160y, i
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wm. 2 Same as Fig. 1 but for 2C -
C at energy 1440 MeV.

wm. 3 Same as Fig. 1 but for '*C -
C at energy 2400 MeV.

3. Results and Discussion

3:*. The Optical Potential

T . . .
he optical potential between two nuclei at distance r is calculated for '2C - 12

Syste =
m at Eiqp = 1016, 1440 and 2400 MeV. Also, the optical potential is calculated for
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Fig. 4 Same as Fig. 1 but for 180 5
- 12 at energy 1503 MeV and the :
dashed double dotted line represents -
phenomenological potential [23].

r (fm
or (mb)
Reaction | Energy B = B2 Experimental | Other theor. | Ref.
(MeV) 45° 60° 90° results calculations
C-C| 1016 764.81 | 1057.10 | 1291.5 996750, 1040 24
960 % 25 .

120 12C | 1440 721.53 | 982.01 | 1203.1 907 + 50 25 ks
12c_12C | 2400 700.19 | 945.57 | 1159.6 860 40 806739 25 | °
6 _12C | 1503 | 1075.90 | 1221.30 | 1343.8 1259 9

1184

1136

Table 1 The nucleus-nucleus reaction cross-section compared with other calculated results and :
with experimental data.

16() - 12 gsystem at energy 1503 MeV. These calculations are performed using equation
(2.4) and considering the nucleon-nucleon scattering amplitude ¢(e, y) to be [1]

(3.1)

m_BQAQ\T& w
t(e, HIA|V ‘lmxulwm
(e, ) m) g (—y*/2B)
where o is the average nucleon-nucleon total cross-section, o is the average of the -
ratio of the real to the imaginary part of the NN forward scattering amplitude and B~
is the average slope parameter. Figs. 1-4 show the real and the imaginary parts of f
the dominant components of the optical potential, which are plotted for three sets of
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Fig. 5 The elastic scattering differential
cross-section calculated for 12C —!2 C at 1016
MeV for three sets of orientation angles and
compared with the results due to monopole-
monopole force only. The solid line repre-
sents the calculations for 8 = B2 = 60°.
The dashed line represents the calculations for
B1 = B2 = 90°. The dashed dotted line repre-
sents the calculations for 8; = B, = 45°. The
dotted line represents the calculations for the
monopole-monopole force.
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Fig. 6 Same as Fig. 5 but for >C -

[ {degrees)
c.o. '2C at energy 1440 MeV.

¢ ; ;
%m orientation w:.m_mm m._ = f; = 45°,60°,90°. Also, the sums over all components are
otted for each orientation angle. Figs. 1-3 show the optical potential and the dominant
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energy 2400 MeV.
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Fig. 7 Same as Fig. 5 but for 12C - 2C at

components for
Our calculations

1203 _ 123 reaction at energies 1016, 1440 and 2400 MeV, respectivel
are compared with those calculated by Faessler .
density formalism, and the comparison is made for §; = f2 = 60°. The

: 18 B Fig. 8 Same as Fig. 5 but for 150
Seum, (eSS 12(3 at energy 1503 MeV.

c.m

[13] using the energy.
monopole:’
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monopole component W (0,0) dominates the contributions for the three orientation
angles considered here. The quadrupole-quadrupole component W (2, 2) has an opposite
sign to the monopole-monopole force at 7 > 2. The monopole-quadrupole force has an
opposite sign to the monopole-monopole force at §; = F2 = 45°, then it reflects its sign
for Bi = B2 = 60°,90°. We can see from these figures that the depth of the optical
potential becomes deeper on summing the various components for the three orientations.
Also, the depth of the potential is of the same value for the three orientations at
definite value of energy. It is clear that the radius of the optical potential increases by
increasing the orientation angles. Comparing our potential with the potential calculated
by Faessler, one can see that our real and imaginary potentials are deeper, but the two
potentials have nearly the same radius. One can see from Fig. 3 that the optical
potential calculated by Faessler [13] has positive value at r = 0 and changes to a
negative value at r > 2 and it coincides with our monopole-monopole potential at
r > 5. From Fig. 3, also, it is clear that the imaginary potential has deeper values than
the real potential, which is confirmed by the other potential {13]. Comparing the depth
of the total optical potential for the three energies considered here, we find that the
depth of the real potential is lowered on increasing energy, which is in agreement with
the results obtained by Faessler [10, 12, 13]. Fig. 4 shows the real and the imaginary
parts of the dominant components and the total optical potential for 160 _ 12C reaction
at 1503 MeV. Also, the phenomenological [23] potential is presented for comparison
with our results. One can see in this figure that the depth of the folding potential is
not affected by the monopole-quadrupole and the quadrupole-quadrupole components
for any orientation. Comparing our potential with the phenomenological potential, we
find that our potential is deeper, but they have the same value as the phenomenological
potential in the region r = 4 — 8.

3.2. The Elastic Scattering Differential Cross-Section

The elastic scattering differential cross-section is calculated for the reactions under
consideration taking into account the excitation of the low-lying collective 2t (4.44
MeV) state. Here we calculate the elastic 12C - *2C scattering cross-section at Ej,p =
1016, 1440 and 2400 MeV using the optical potential obtained in the previous subsec-
tion. Also, the elastic scattering for %0 - 12C system is calculated at energy 1503 MeV.
Fig. 5 shows the ratios of the elastic cross-section to the Rutherford cross-section for
'2C - 12C system at 1016 MeV which is compared with experimental data [24]. These
ratios are plotted for three orientation angles 8, = f» = 45°,60°,90° and compared
with the theoretical results considering only the monopole-monopole force of the optical
potential. One can notice from this figure that the calculated results with orientation
angles ; = 3 = 45°,90° do not predict the experimental minima and maxima. Our
calculations for 8; = f2 = 90° are shifted toward smaller angles and our calculations for
B1 = B, = 45° are shifted towards large angles. The calculated results with orientation
angles 8, = B, = 60° nearly agree with those obtained considering only the monopole-
monopole force of the optical potential and give good agreement with experimental data
at small angles up to O¢m = 9°. These calculated results with g, = f; = 60° give
the position of the fourth maximum. We can see that our results are larger than the
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4

i

Fig. 9 The elastic scattering differential
cross-section of 2C—'2C at 1016 MeV cal-
culated for B1 = B2 = 60° (solid-line) and
compared with the results of Faessler [13]
(dashed dotted line) and Lenzi [17] (dashed
line). i

T
i S

102

15 Fig. 10 Same as Fig. 9 but for 12C
12G at energy 1440 MeV.

experimental data at the fourth maximum and beyond it. Fig. 6 is the same as Fig. 9 ;
but for 12C —12C at 1440 MeV. Also, the experimental data [25] are presented with the
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Fig. 11 Same as Fig. 9 but for 2C - '2C
at energy 2400 MeV.

do/dopyen
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Fig. 12 The elastic scattering dif-
ferential cross-section of !*0 - 2C
. at 1503 MeV calculated for 81 =
. B2 = 60° (solid-line) and compared

0 - with the results of Lenzi [17] (dashed
€ . (degrees) line).

wi ©

T

o
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Mrmogﬁoﬁ calculations. Our results calculated for orientation angles §; = F2 = 60° are
early .ﬂrm same as those calculated using the monopole-monopole force of the optical
WMMMEE_ and erwmm results agree with the experimental data at the first and second
o ima. They give deeper values at the first minimum, but coincide with the second
Nimum. At angles larger than O.,, > 6°, the theoretical calculations are larger
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than the experimental data. The theoretical results calculated for orientation angles :
By = B2 = 90° are shifted toward smaller angles and that calculated for orientation
angles f, = P2 = 45° are shifted toward larger angles. Fig. 7 is the same as Fig. 5

but for 12C —12C at 2400 MeV. From this figure, we can see that the results calculated
using orientation angles 8; = B2 = 45°,90° do not give the positions of the maxima’;
and the minima. But the theoretical results calculated for §; = 2 = 60° are nearly the -
same as those calculated without considering any deformation in the colliding nuclei. :
We can see that these results give good agreement with experimental data only at the

first maximum up to ©¢., > 2.5°, then they give the same behaviour of experimental &

data but are of larger values. Fig. 8 is the same as Fig. 5 but for 160 —12 G reaction;
at 1503 MeV. We can see from this figure that our results calculated for y = 2 = 60°
and those calculated using monopole-monopole force of the optical potential agree with
the experimental data up to ©.m < 9.5°. At the fourth maximum and beyond it, these ;
theoretical results have larger values than the experimental data. We can see from the
above results that our theoretical calculations cannot fit the experimental data at large ;

angles and the inclusion of the excitation to the 9t state does not improve the &mmﬂom

scattering calculation.

A

Figure 9 shows the comparison of our results calculated for the orientation angles :
B = P2 = 60° compared with the results obtained by Faessler {13} and Lenzi [17]
for 12C =12 C reaction at energy 1016 MeV. We can see from this figure that the .

position of the first minimum is obtained accurately by Faessler. The three types of

4

calculations have the same position for the second, third and fourth maxima, but Lenzi
could obtain the values of the experimental data at the second maximum only. At the
fourth maximum and beyond it, the theoretical calculations are not in agreement with
experimental data. Fig. 10 is the same as Fig. 9 but for 12G 12 C at 1440 MeV. This
figure shows that the three types of results agree with the first experimental maximum.:
The position of the second maximum is obtained by Lenzi, Ohtsuka and present, bu
our results agree with the values of the experimental data. At @, m, > 6° our results and

Faessler results have the same behaviour as that of the experimental data but do not give
the proper values of experimental data. The results of Lenzi have a much deeper first;
and second minima. Fig. 11 is the same as Fig. 9 but for 12C -2 C at 2400 MeV. We_
can see from this figure that the first maximum and minimum are obtained by the three
types of calculations. The position of the second maximum is well established by the
three types but correspond to larger values than the experimental data. At O, m > 4°%;7
the three types of calculations do not reproduce the experimental data. Our results:
and Lenzi’s have larger values than the experimental data and Faessler’s results are of
smaller values than the experimental data. Fig. 12 shows our calculations for 1°0 ~12C;
at 1503 MeV which are calculated for orientation angles f; = f2 = 60° in comparison:
with the results of Lenzi [17]. We can see from this figure that our calculations agree
with the experimental data up t0 ©c.m < 7°. Lenai’s results do not give the position of
the first minimum, and have smaller values at the second and third minimum and thé
third maximum. At O, ,, > 7°, the two types of calculations could not be in accord wit
the experimental data. So, from the comparison with the other theoretical calculation
we can see that they cannot give agreement with the experimental data better than”

h
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those obtained by our calculations. Changing the orientation angle of scattered nuclei
did not improve the agreement with experimental data at large angles but only made
5 shift to all the distributions.

4. The Reaction Cross-Section

The reaction cross-section is calculated for the reactions under consideration using
the equation

or =5 2 (2+1)(1-15P),
=0

where S; is given by equation (2.9). The reaction cross-section is calculated at the
orientation angles 8; = f2 = 45°,60°and90°. Our results for the reaction cross-section
are presented in Table 1 and compared with other results which are measured by the
attenuation method [24, 25] and with other theoretical calculations. We can see that
our calculations are comparable with the other results, specially the results calculated
at the orientation angles §; = 83 = 60°.

5. Conclusion

In this work we study the orientation dependence of the interaction potential be-
tween two light deformed nuclei. Also, the orientation dependence is studied for the
elastic scattering differential cross-section and the reaction cross-section. These calcu-
lation are performed for 2C —!2 C system at energies 1016, 1440 and 2400 MeV and
for 160 —12 C system at 1503 MeV. We found that:

1. The optical model potential calculated for deformed nuclei is deeper than that
calculated for spherical nuclei. Changing the orientation angle of the deformed nuclei
does not affect the depth of the potential, but on increasing the orientation angle, the
radius of the potential increases by a very small value and the potential becomes more
attractive at large distance (r). Comparing our potential with the potential calculated
by Faessler, we can see that our potentials are deeper, but the two potentials have nearly
the same radius. The dependence of the double folding potential on the orientation
angles of the deformed nuclei was studied by Greiner et al. and they found that rotating
the two 238(J nuclei produces a dramatic change on the total nucleus-nucleus force at
e given r value on nuclear surface. This dramatic change is not expected in our case
since we are considering light nuclei with small deformation.

2. On increasing the deformation angles, the angular distribution is shifted towards
smaller scattering angles.

3. The reaction cross-section calculated for orientation angles §; = f2 = 60° is in
agreement with the experimental data and with other theoretical calculations.

From the last three points we can see that the orientation and the deformation
dependence is not sufficient to obtain a complete agreement with the experimental
data and still there is a disagreement at large scattering angles. This implies some
modification is needed to obtain a better fit, e.g.

a) Introducing the 3-state of the deformed nuclei.
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b) Considering more sophisticated densities for the interacting nuclei such as Wood:
Saxon densities and modified Fermi densities and/or another effective nucleon-nucleo
interaction such as that of Love and Franey.
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