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We study the influence of the counter-rotating terms and the cavity damping
on the squeezing phenomena (i.e., the reduction of quantum fluctuations) in the
Jaynes-Cummings model. We analyze two particular cases, namely, when the
cavity mode is initially prepared in (1) the vacuum state and in (2) the squeezed
vacuum state.

1. Introduction

During the last decade micromasers have been studied extensively both experimen-
tally [1-4] and theoretically [5]. Theoretical description of the micromaser [5] is usually
based on the model of an interaction of a two-level atom with a damped harmonic os-
cillator (a monomode EM field). The atoms are supposed to be near resonant with the
field. In this case the interaction of a single atom with a monomode EM field can be
described by the Jaynes-Cummings model [6,7] within the rotating-wave approximation
(RWA). The rotating-wave approximation is perfectly justified for small values of the
parameter g/w, where g is the atom-field coupling constant in the dipole approximation
and w is the atomic transition frequency. Simultaneously, a detailed investigation of the
role of counter-rotating terms (CRT) [i.e. the role of those terms which are neglected by
the RWA] in the atom-field interaction Hamiltonian can reveal new nontrivial features
of the micromaser dynamics.

The Jaynes-Cummings model without the rotating-wave approximation has been
studied recently by number of authors. In particular, several aspects of the atom-field
dynamics described by the JCM without the RWA has been analyzed by Graham and
Héhnerbach [8]. Huan, Peng and Li investigated [9,10] the Lamb shift of the atomic
levels and the shift of the field frequency due to the counter-rotating effects. Com-
pagno with coworkers discussed [11,12] the role of virtual photons (which are associated
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with the CR terms in the Hamiltonian) in processes of the absorption and the sponta-
neous emission. Rui-hua Xie, Gong-ou Xu, and Dun-huan Liu investigated {13] atomic
squeezing, photon antibunching and the effect of virtual-photon field in the JCM with-
out the RWA. Atomic squeezing and quantum statistics of the damped cavity field in
the JCM without the RWA has been analyzed by Seke [14-16]. Zaheer and Zubairy
used a path-integral approach [17] to include the CR effects in the atom-field dynamics.

In the present paper we will study the effect of the counter-rotating terms and
the cavity damping on dynamics of a two-level atom interacting with a cavity field. In
particular we will analyze the role of the CRT on the reduction of quantum fluctuations.

2. Recurrence differential equation for density-matrix elements
The Liouvillian of the JCM without RWA in the interaction picture reads as
L@t) = Lar(t) +ihr, Lar(t) = [Har(t), -}, (2.1)

with the corresponding atom-field interaction Hamiltonian (h = 1) given by the relation

Har(t) = g(6-e7 + 54" ® (ae™™* +ale’™"), (2.2)
and the field-damping Liouvillian [18]
Ar(..) = s((a(...),a"} + [a, (..)a'"]), (2.3)

which describes dynamics of the cavity-field mode (i.e., a harmonic oscillator) coupled
to a zero temperature reservoir (heat bath). Here &1 are the atomic dipole moment
operators, w is the frequency of the atomic transition which is assumed to be on res-
onance with the frequency of the resonant cavity field mode, a! and @ are the photon
creation and annihilation operators, g is the atom-field coupling constant, and « is the
cavity-damping factor.

The time-evolution of the combined atom-field system is described by the Liouville
equation for the atom-field density operator j(t):

dp(t AP
l% = —il()(1). (2.4)
In the present paper where we treat the specific initial condition
p(0) = p4(0) @ pr(0) (2.5)
with atoms being in a coherent superposition of the upper and lower states
pa(0) = [$a(0))($a(0); (2.6)
[$4(0)) =sinfis =1/2,m=1/2)4 +cosf|s =1/2,m= —1/2)4, (2.7)

where the vector |s = 1/2,m = 1/2)4 (Is = 1/2,m = —1/2)4) describes the upper
Coimwv state of the two-level atom under consideration. The radiation field is assumed
to be initially either in the vacuum state

[¥r(0}) = [0)r, (2.8)
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or in the squeezed vacuum state described by the state vector

[$R(0)) = [0squeesed)re = D, F(K)12K)r; (2.9)

k=1

with x
(k) = —— A:v Hae(0) 2.10
~ Ry \2u) TP (2.10)
where Hy are the Hermite polynomials. For the sake of simplicity, we chose the param-

eters p and v such that

u = coshr, = sinhr, (2.11)

where the squeezing parameter r is chosen to be real.
Using basis vectors

| —

In(k)y=|s,s —nya®|k)r, s=5, n=01 k=012 .. (2.12)

el

we can obtain from the Liouville equation (2.
matrix elements h“:a_:év = Piim),n(k)

) the following equation for the density

%?E_:é = IQT\C —n){n+1)(k + 1) pps1(k+1)1(m)
/(L =0+ 1)(m + 1) pre)i+1(me1) + V(2 = n)nkpn_1(k—1),10m)
=V 2 —D)lIm pngie) -1 (m-1) + (2—=n)n(k +1) e py_1(k41)1(m)
=/ @2 =Dl(m +1) ¥ priyi—1(ms1)
+V/(L = n)(n+ 1)k e*™ payik-1)4(m)
-v(1=-9+ CSmI?.Eb:?YIZSLL
+26/(k + 1)(m+1) Pr(k+1),i(m+1)

—&(k + m)pnkymy, n,0=0,1, km=0,12, .

(2.13)
In order to examine the field and the atomic squeezing phenomena we introduce the

corresponding squeezing parameters. To be specific, the field quadrature operators d;
and a, are defined as

L]
2

AQI:J_ [a1,a9] = 7 (2.14)
The effect of the field-mode squeezing is associated with the reduction of quadrature
fluctuations below the vacuum limit, i.e., when the variance ((Aa;)?) (I = 1,2) is smaller
than 1/4:

1
ay = MBTE_ Gy =

1
»4
The degree of the field squeezing can be quantified with the help of the squeezing
Parameter () defined as

((Aa)*) = @I A@) () = ((@)*) — (@) < 7, =12 (2.15)

Q = 4{(Aay)*) — 1, (2.16)
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where squeezing exists for —~1 < @ < 0, while the maximum (100%) squeezing is

obtained for @ = —1.
The components of the atomic pseudospin operator are given by relations

. 1

1,. . . . -
bo = (04 +02), by =564 —5), a11)

—H@HM @.mL = s.m.n_

where &, is the atomic population-inversion operator. The variances of the operators |
&, and &y obey the uncertainty relation

. 2 1o . 1.
(882)2)((86)) 2 {E=, oI = @) (2.18)
The atomic state is said to be squeezed whenever
1.
((A&))e < m_AquL. l=z,y. (2.19) .

This effect can be measured in the Stern-Gerlach—type experiment which allows to ¢
measure mean values of the relevant atomic operators. To quantify the degree of the

atomic-dipole squeezing one can introduce the squeezing parameter .S; defined as

S = 2((A51)%)e

1= ~ )
(=)l

If S, is smaller than unity then the dipole moment exhibits reduction of quantum

fluctuation. The maximum (100%) squeezing is associated with the value of S; equal

to zero.

l=1=z,y.

3. Numerical results

We solve the recurrence equation (2.13) numerically within the RWA and without the

RWA. In addition, we consider the case of the lossless as well as the damped cavity
with the damping parameter K = /g = 0.5 (given in units of the atom-field coupling
parameter g). We consider two cases when the cavity field initially prepared in the
vacuum state and in the squeezed vacuum state.

The atom is assumed to be initially prepared in the superposition state (2.7) which
exhibits dipole squeezing. The mean values of the atomic operators in the state (2.7
the following expressions

. 1 . 1
QDQLJQ = MC — sin? 20), {(0;)0 = i cos? 4.
In our paper we consider the phase f of the initial atomic superposition state to be
equal to 0.2487 (in this case (5,); # 0, so we can use the parameter S to quantify the
degree of the atomic squeezing).
To understand dynamics of the model under consideration we study the time evo-
lutions of the atomic population inversion

Z(T = gt} =T[5, p(t)] = (6. ),

(3.1)

(3:2)

(2.20)
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Fig. 1 Time evolutions of the atomic population inversion Z (dotted), the field-squeezing
parameter @ (solid), the mean photon number P (dashed-dotted) and the atomic-squeezing
parameter S, (dashed) as functions of the scaled time T' = gt for a lossless cavity. The
atom is supposed to be initially in the coherent superposition of its upper and lower states
(8 = 0.2487). The field mode is initially in the vacuum state. Calculations are carried out in
(a) the rotating-wave approximation and (b) without the rotating-wave approximation with
the coupling constant g given in units of the atomic transition frequency such that g/w =0.1.

the mean photon number

P(T = gt) = Tx[alap(t)] = (a'a)., (3.3)
and the atomic and the field squeezing parameters S; and @, respectively. From our
numerical calculations it follows that for the chosen phases of the atomic and the field
squeezing the parameter Sy is in the present model always larger than unity, i.e., in this
nc.mmgncwm no squeezing can be observed. All plots presented in the paper are given in
units of the scaled time 7' = gt.

From Figs.1 and 3 it follows that in the case when the cavity mode is initially
Eowmaom in the vacuum state the initial dipole-moment squeezing is rapidly deteriorated
.9:.5@ the first instants of the time evolution, i.e., the parameter S, does increase from
its initial value associated with the almost maximum degree of squeezing (S; ~ 0) to
the “steady state” value equal to unity [see Fig.1(a)]. In the case when the rotating-
wave approximation is adopted the decrease of the dipole squeezing (i.e., the increase
of the parameter S;) is approximately exponential. It is interesting to note that during
arm.mrog time interval when the reduction of quantum fluctuations is deteriorated the
cavity damping has essentially no influence on the decrease of the atomic squeezing
Tosvwwm Fig.1(a) and Fig.3(a)]. Moreover, the influence of the cavity damping on the
time evolutions of the population inversion and the mean photon number is also not
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. 4 The same as Fig.2 for a damped cavity with K = 0.5.

Fig. 2 The same as Fig.1 but the field mode is initially assumed to be in the squeezed vacuum Fig
. oscillatory decay of the reduction of quantum fluctuations of the dipole operator [cf.
2 - 9 Figs.1(b) and 3(b)]. In this case we see again essentially no influence of the cavity damp-
j L - ing on the dipole-moment squeezing. A minimal influence on the population inversion
] and the mean photon number can be observed.

From Figs. 2 and 4 we can conclude that when the cavity mode is initially prepared
in the squeezed vacuum state then the atomic squeezing is deteriorated even more
rapidly than in the case with the field mode initially prepared in the vacuum state. In
the RWA case, the atomic squeezing is deteriorated almost linearly within an extremely
short time interval, whereas the decay of the field squeezing is slower. The CRT enlarge
somewhat the deterioration time of the atomic squeezing and leads to an oscillatory
Increase of fluctuations of the field mode. Simultaneously, the CTR does not cause
significant effects regarding the mean photon number and the population inversion

state with the squeezing parameter r = 1.
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during the observation time interval.
We see from Fig.4 that the damping leads to the decay of the mean photon number

m:m to a more rapid (almost linear) deterioration of the field squeezing, but does not
Emcmsom the decrease of the atomic squeezing. The time evolution of the population
Inversion is not affected significantly during the short observation time interval under

consideration.

4. Conclusion

Fig. 3 The same as Fig.1 for a damped cavity with K = 0.5.

In the present paper we have derived an exact recurrence equation for density matrix

elements of the JCM without the RWA. We have solved this equation numerically for two

significant. With the initial atomic state under consideration the field squeezing does
initial states of the cavity mode. Namely, we have assumed to field mode to be initially

not occur in the present model.
When the counter-rotating terms are considered in the Hamiltonian an approx-

imately exponential decay of the atomic squeezing is substituted with the damped
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prepared in the vacuum state and the squeezed-vacuum state. We have considered both
the lossless and the damped cavity.

We have found that the influence of the cavity damping in the chosen observation
time interval, during which both the initial atomic squeezing and the field squeezing
decrease to zero, is not very significant. While the cavity damping has no influence on
the atomic squeezing and accelerates the deterioration of the field squeezing, the CRT
leads to the oscillatory decay of the initial squeezing.

Furthermore, we have shown that deterioration of the atomic squeezing depends on
the squeezing of the field mode. In particular, for chosen phases of the field and the
atomic squeezing the deterioration of the atomic squeezing is enhanced by the presence
of the initial field squeezing.
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