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Statistical assumptions for pre-equilibrium reaction theories are examined. Im-
proved method to calculate transmission factor and spreading width for preequi-
librium process are presented. For theses evaluation absorptive potentials based
on thermal theory are discussed.

1. Introduction

About 30 years ago Griffin [1] originated the exciton model of pre-equilibrium reactions,
and extensive and successful phenomenological analyses followed.Feshbach, Kerman and
Koonin (FKK) [2] gave a quantum mechanical basis of pre-equilibrium reaction theory,
and the distinction between multistep direct (MSD) and multistep compound (MSC)
proccesses became clear. Next Tamura, Udagawa, and Lenske (TUL) (3] developed a
MSD theory based on DWBA, and many pre-equilibrium reaction data were successfully
analyzed using either the FKK or TUL theory [4, 5].

We joined in effort to develop more fundamental understanding of pre-equilibrium
reaction by using the random matrix and Grassmann integral, which was very success-
ful in solving the compound reaction problems [6]. We studied both MSD and MSC
reactions (NWY) [7, 8, 9, 10, 11). For the former we adopted TUL approach, but
with some modification in statistical assumptions. For MSC reactions random matrix
theory is applied and weak and strong coupling approximations are examined. Further-
more connection between MSD and MSC and effect of direct reaction on MSC process
was discussed. Koning and Akkermans [12, 13] summarized the development of these
theories and classified them according to the way how the statistical assumptions are
introduced.
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To formulate pre-equilibrium reaction theories statistical assumptions are introduced
to neglect intereference terms by employing the statistical argument of random sign of
matrix elements. FKK considered that the leading particle is responsible for random
sign, while TUL and NWY the residual nucleus. These two kinds of introduction
of statistics are called the leading particle statistics and the residual system statstics
respectively by Koning and Akkerman {12, 13].

Application of our theories is still limited at present. For MSD calculations with
some approximation are available by Koning [13] and Lenske et al. [14], but full calcu-
lation was not yet performed. For MSC, Herman, Reffo and Weidenmiiller [15] made a
major contribution, but there is still gap between the theory and the practical applica-
tion.

The purpose of this paper is first to examin the statistical assumptions on which the
pre-equilibrium theories are based using a schematic model. The second is to discuss
the relation between parameters necessary to theories and the phenomenological ones.

2. Statistical assumptions

In pre-equilibrium reaction theory, equilibration in whole system is not assumed, but
equilibration within the states with same exciton number is assumed. In the case of
MSC process equilibration time 7o of a state with the exciton number 2m should be
short compared with the decay time 74 into exciton states with 2(m + 1); namely
70 < T4. The equilibration time 7o is estimated from the spreading widths [16], and
approximately given by 7 /THAm = 0) where the denominator is the spreading width
in which the exciton number does not change. The decay time is also estimated from
the spreading width for Am = 1. They are proportional to the accessible state density
(see Sec.4), which is further approximated just a state density. If we use the Oblozinsky
formula [17], the state density monotonically increases with the exciton number for the
energy region we are interested in. Then 79 > 74, and equilibration within the states
of same exciton number is never accomplished.

However if the state density which includes effects of residual interaction is adopted
[18], the situation changes. Residual interaction mixes exciton states, and state density
for lower exciton states increases in lower energy region, as shown in Fig. 1. So in some
circumstances equilibration within exciton states could be realized, but it is difficult
to give any universal conclusion. For MSD process the incident particle, the leading
particle, collides with the target nucleus. To proceed in MSD process the leading
particle must remain in continuum. Therefore the absorptive potential responsible for
this process corresponds to absorption into the P-space, which is denoted by Wp. The
average interval of occuring of this collision is called collision time 7. For nuclear matter
it is given by
__h
T awp

1)

Te

Absorptive potentials for I and @ spaces are energy dependent as shown in Fig. 2. The
energy of the leading particle after the first collision decreases, and also —Wp decreases.
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Fig. 1. State densities for 2*Pb. (a) Oblozinsky formula, (b) independent particle model, {c)
with random residual interaction.
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Fig. 2. Absorptive potential for P and @ absorption for n+2%% Pb.

The collision time for the second collision depends on the incident energy, and in some
circumstances —Wg(Am = 0) > —Wp. If the following relation

Te > Ty > To (2)

holds, equilibration is achieved within the target nucleus. However it is difficult to
expect such equilibration at high incident energy.

In pre-equilibrium reactions residual nucleus is densely populated and they cannot
be observed individually. As the time interval between the reaction and detection
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of reaction product is long enough the residual states are well equilibrated and the
statistical treatment is justified. A final state wave function |xg{es)) is expanded in
terms of exciton states | Xmp) @5

Ixa(ea)) = D Chulxmus (3)

mpy

For the expansion coefficients the orthogonality relation

M QW{LQW_‘E~ = %3:‘1&.\:1 A%v
B

holds. The detector system measures the energy of the outgoing particle and con-
squently the excitation energy of residual nucleus ¢, so the count is proportional to

B
Y CBCrrw01(e — €p) = Smm By Y |Ch1Pd1(e — €p), (5)
8 )

where I is the energy resolution of the detector and é;(¢) is a distribution function
centered at & with the width I. In the limit of I — 0 it becomes a delta function. If the
width I is large enough, the interference terms vanish due to the orthogonal relation
(4). To find the lower limit of I for which interference terms vanish is an interesting
problem. The diagonal term is expressed as

8 12 _ 1 Qm 1 .

MU _Q.‘:t_ %~Am - .mbv - lﬂHSMAE_m — €5 “v sN_\wv = I.M—..HAQ_ m&“ﬂ:\y*\mv = bw:tﬁmv. A@v
where the energy average is replaced by the ensemble average, @, is the projection
operator onto the exciton state specified by my, and pmpul€) is the true partial state
density.

We made a simulative calculation using a simple model; for 56Ni, J™ = 3+ Ip—1hand
2p—2h states are diagonalized by using a delta function type interaction, whose strength
is increased by a factor of 2 to enhance the mixing effects. Products of expansion
coefficients for 1p — 17 states Qm:Qm . are shown in Fig. 3. If they are summed over §
the diagonal product must be unity, while non-diagonal ones vanish. Diagonal products
are expected to be distributed around the unperturbed energy €,a with a width of
order of the spreading width of 1p— 1h state. We found that the non-diagonal products
are also distributed in the same energy range. Therefore taking the energy resolution
comparable to the spreading width is a sufficient condition of residual system statistics.
The first order contribution to MSD cross section is DWBA one multiplied by the true
state density for m = 1, ppu(€p)-

The residual system statistics is sufficient to calculate 1-step MSD reaction cross
sections, but for 2-step or higher MSD reactions the collision time argument must be
employed again. In the second order process a 1p — 1h state is created in the target
nucleus by the leading particle. The leading particle looses the energy but if it is still
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Fig. 3. Products of residual state amplitudes C m: plotted against Ej for 56Ni, 3% states (147

levels). The numbers 3,4and 5 correspond to the neutron particle hole states (p1/2 .\,.W\_L
(psjafis)s Fsiafapn)-

high in continuum, the leading particle strikes again the target nucleus before the target
nucleus reaches equilibrium. In this case the collision time relation

T, < T+ < To (7)

holds, and equilibration is not achieved. Accordingly statistical treatment at the in-
termediate state cannot be performed, and intereferences among intermediate states
do not vanish. In this situation we proposed the sudden approximation [9]. The 2nd
order contribution is proportional to 2p—2h state density pp,hipshs (ep)- To get through
the 2p — 2h state we have four choices to select the firstly created 1p — Lh state, and
these terms will interfere. The calculation to implement these effects is difficult and no
aumerical calculation is yet undertaken.

If the equilibration is achieved, then the calculation becomes easy and additional
assumption leads to the 2nd order DWBA type expression. This is the work of TUL
[3]. The target nuclear wave function for the final state is expanded as

- 2} 1

_\KEV - MU Qﬁn?f.«ﬁw‘wuﬁru_x.‘v Amv
where y represents the equilibrated intermediate state of the target nucleus. In the
absolute square of the 5 _matrix, the following sum is included,

3 8
M Qh Qh-~.u.<amAmE - mv = «mﬁwﬁm «wr‘uru%.ﬁi\:ﬁ:n AMQ - Nv AGV

Lhyy
I

Vanishing of the interference terms is a consequence of the residual system statistics,
but it also employed the so-called Axel-Brink hypothesis. A 1p— lh state is built on the
equilibrated intermediate state x and the state density of this 1p — Lh state is given by
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the state density at energy less by the excitation energy €,. The Axel-Brink hypothesis
is expected to be valid for well developed collective states, but for non-collective 1p —
1h states it must be testified. The residual system statistics is applied also to the
intermediate states according to the adiabatic approximation, and the cross section
becomes the DWBA one multiplied by two state densities pp,h, (E8 = €v)Ppihy (Ex)- (We
calculated the sum 34 _wa_M = S_armwnwaw_i numerically in the case of *Ni, and
found that it ranges from 1 to 0.6, whereas it is 1 if the hypothesis is valid.) This
second order formula is easy to calculate and many applications to practical analyses
are performed.

FKK [2] used a random sign assumption and lead a convolution type formula which
is easy to calculate. Later Akkermans and Koning [12, 13] analyzed this assumption and
concluded that this results are obtained through the leading particle statistics which
is concerned with the matrix elements between the leading particle and the residual
system.

3. Transitions from P to () spaces

In MSC reactions the initial exciton state is created by the leading particle, and the P
space and the () space are connected by the transmission coefficient,

T = 20(BD| — 2W D) - (10)
where
m _ @3
Wg =Im th&@lmlgmow.‘_ (11)

is the absorptive potential corresponding to @-space 2m exciton states. The distorted
wave function satisfies

E|anl.€o|:|5ﬁ¢no, (12)

where Wo = 3., WG In Q space all nucleons are in bound states. On the other
hand in an usual optical model, P space corresponds to the elastic channel and @) space
to all other channels. Therefore in usual optical model the transmission coefficient is
calculated by eq.(10), in which wg is replaced by Wp + Wo and the wave function
satisfies eq.(12), in which the same replacement of Wg by Wp+ W is taken place. The
lowest order calculation in which V' is neglected is carried out in [19] and the results for
Q space absorption and P 4 @ absorption are compared. The ratio in the absorptive
potentials is a decreasing function of the incident energy, as seen from Fig. 2. The
ratio in the reaction cross sections is also a decreasing function, but the reduction is
not as large as the one for the absorptive potential. This is because the transmission
coefficient is not proportional to the absorptive potential.

Next transitions from P to @ is discussed. The initial exciton number in MSC
reaction has been discussed by many authors. At the early time it is considered as
a parameter, and the preferable value to fit experimental data was searched. FKK
also considered the possibility, but it was not treated explicitly. In our paper [11} the
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transmission coefficient in the presence of MSD process was discussed formally, and
they are numerically evaluated in {19].
The distorted wave satisfying the Eq. (12) is expanded in perturbation series in \%

as
3 = a0 +20) + o + - (13)

Inserting this in eq.(10) the perturbative expansion of transmission factor is obtained,

T @IS — (@I = T+ T+ (19
According to numerical calculations the direct transition represented by _mww is dom-
(2)

inant at low energy, but the second order contribution Tam, which is absorption via
the first step MSD proocess, increases with energy and surpasses the zero-th order one.
The odd order contribution vanishes due to the residual system statistics.

These transitions from P to Q via MSD process are also investigated by [20] and show
that these paths are essential to get agreement with experimental data. Furthermore in
[21] these are included in the framework of FKK, which make the calculation tractable.

4. Spreading widths

Knowledge of transition rates within @ space is essential to evaluate the partial states
density and MSC reaction cross sections. The spreading width in Q space plays role of
transmission factor for P = @ transition. The spreading widths are evaluated using
the dynamical shell model potential, and the results are compared with experimental
data. Energy dependence and jl dependence are not known in details, as spreading
widths are obtained only at limited number of points.

We have evaluated spreading widths with semiclassical approximation {22}, so they
are obtained as a continuous function of energy and convenient to our purpose. First
quantum mechanical expression is given. The spreading width for nucleon labeled a is
given by

ri =2 \ (6(rs E)P (=W (r, Ea))dr (15)

where W(r, E,) is the imaginary part of the optical potential, while the radial wave
function @(r, E,) is a solution for a real part of the optical potential. This expression is
not exact, but gives very good approximation. When the optical potential is non-local,
correction factors must be included [23]. In the semiclassical approximation the density
is replaced by

lo(r, E)* = k7' (1, E) (16)

where k(r, E) is the local wave number. It was found that the semiclassical approxima-
tion works very well, and the energy and jI dependences of spreading widths are clearly
seen.

To obtain the spreading width for an exciton state I'j must be averaged over the
energy E, [15]. Furthermore the absorptive potential appeared in (15) is partitioned
according to the change of the exciton number, and the spreading width from exciton
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state m to n '}, is obtained. From this the internal transition rate which appears in
the master equation for MSC process is given by \

21 palm = Tarm: (7)

On the other hand the internal transition rate is expressed in terms of the second mo

ments of the resid int i : 2 e A

wents of sidual interaction and the the state density without residual interaction

pm 1s given by
N,Mwu = wﬁmﬁv.\gﬁ:mﬂbﬁs (18)

n

in weak coupling approximation. In strong coupling it is replaced by
Tt = —4 HBAQSXELVE:HBAQ:Y (19)

where g, 15 @ Hubbard-Stratonovitch variable (see Eq. (22)). From these relations the
second moments M are obtained. \
State density with residual interaction, true state density, may be calculated for
given single particle spectra if the residual interaction matrix elements are assumed to
be random matrices. Partial state density for the exciton number m is given by ‘

e e

ponle) = |w fim Im teE ~ 4 1) Q- @3

and the relation p(E) = Y. pm(E) holds. It is calculated from
1
\u:\pﬂmy = IMHBMMN —ho— Q.._«:_t_::: AMHV
I

where hg .wm the independent particle part of the hamiltonian h, and the Hubbard-
Stratonovitch variable 0o represents the mean field and obtained by solving the saddle

point equation
Om = MI)\ Mmn M—.m —hy — Q._M.w‘:_\. ﬁmmv
n v

We have calculated state density using second moment calculated by a shell model
and results were already shown in Fig. 1. In the shell model calculation not so Bm.:vw
states are available, so the second moment are averaged over a large energy range and
energy dependence of the second moment became obscure. However ﬁmmbm. the EMSSQ
outlined here we can evaluate more realistic density than before.

5. Calculation of absorptive potential

In the last esction, we showed that the absorptive potential plays an essential role in
the caleulation of pre-equilibrium reaction cross section. So far optical potentials have
heen studied %rmcoamsoﬂommnm:% or microscopically by many authors, but the following
conditions should be met in order to apply them in pre-equilibrium reactions.

(1) The target ucleus is not always in 1ts ground state, but excited states specified by
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the exciton number.

(2) The compound system produced by absorption of the leading particle is restricted
to  space with fixed exciton number.

To proceed the calculation further, we use the following methods here;

{3)The serniclassical approximation and the Thomas-Fermi model are used for nuclear

model with the local momentum approximation.

In this m%ﬁaox.:ﬁmaon the average over the energy and the mass number are automati-
cally performed and the calculation becomes much easier.
(4) Only the lowest order processes one are considered.
(5) The incident particle is restricted to nucleon and the collective degree of freedom is
not taken into account, so only the volume absorption is obtained.
(6) For residual interaction delta type interactions are mainly used, and numerical cal-
culations are restricted to this type.
Under these assumptions the absorptive potential is calculated [24].

The imaginary part of the self-energy of nucleon in the nucleus is given by

wi) = nm S 2V (B + Br — By = Ea)
x ?E&m@%@: + A By)n(Es)n(EoK43IVI2L), (23)

where the first term in the square brackets of the right hand side is called the cows..ﬁwﬁom
contribution, and the second term the correlation one. In the equation n(E) is the
occupation probability of 2 hole and 7I(E) is of a particle, and they are fixed once the
temperature T of the nucleus is given,

1 1
2 i n . o —
n(E) = TN R(E) = 1 —n(B) = T5o=Bn7E" (24)

The Wigner transform of the absorptive potential is given by
S\ﬂﬁmw 5 Hﬂf w; v = ~— W Awﬁ‘v|w \ &Hﬂmmmﬂugz»&wwn&wm&w&

X M Amwmﬁww\womw.mﬁ.m.mw.m_a\a\‘._.mwwuwwum»HA»HNAV
82,83,54

X—B\Amnvmﬁmuvam»v +mﬁmwvﬁﬁmmv3hm»V_%hmw + m~ - mu = m»vq ﬂwmv

where 2<<jv is the Wigner transform of interaction potentials. If the occupation
?ovmb._:n._mm are inserted in eq.(25), then absorptive potential for a fixed temperature
is obtained, which was already calculated by many authors.

What we need is the exciton-number-fixed absorptive potential, so the relation be-
tween the exciton number and the temperature becomes necessary. A temperature fixed
state is considered as 2 mixture of various exciton states, and the distribution function

is ﬁuvnoﬁamemm by a Gaussian function [25].

1 m-m?, R |
a isvna\wﬂ\mmﬁ%h\mﬂﬂw 1, m=Wn2 grT, ot = m—m? = 59rTs (26)

i
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where 71 is the average particle or hole number. To obtain the exciton number fixed
potentials from the temperature-fixed one the occupation probabilities are decomposed
into particle part and hole part at the Fermi energy. The occupation ?dvmv.&@vi M

is divided into two partial ones at the Fermi energy Ep, which is the chemical potenti )
corresponding T' = 0, potentil

n(E) = H(E) + p(E), (27)
where
H(E) = n(E)0(Er —E),  p(E)=n(E)0(E - Er) (28)
are the hole and particle parts respectively. The particle number 77 is given by
Eo
/ " oE)(EYE=T (29)

where mwc is gm. 58&5:.:: energy of particle, and is equal to zero in the case of () space

absorption. This equation gives the relation between the temperature and the average

exciton number. ‘ ¢
For the vacancy probability we divide

A(E) = 1 —n(E) = h(E) + P(E), (30)
where
h(E) = n(E)O(EF — E), P(E)=n(E)O(E ~ EF). {31)
Substituting (27) and (30) into eq.(25), Wr is decomposed into 12 components as
S\HAMTHATMWL = MUS\QX@THATW.Z\HY Awmv
where
; T
S\A vﬁmw, Ki,Ri; MJV e Imﬁmﬁvlw \ &Hﬁm%u&.\mﬂaawm&wu%a

(VV Yo (En)ns(Es)na(Eq)(Ey + By — Es — Ea), (33)

X

and n;(E;) is the appropriate partial occupation probability appeared in egs.(27) and
(30). Each potential given by (32) corresponds to each process shown in m,mm. 4. The
process (a) of the polarization contribution corresponds to Am = 1, the c?.vnmmm (b)
and (c) Am =0, (d) and (e) Am = —1. The process (f) does not mo:nlv:nm to the
absorption potential.

/.55.5 the incident energy is low all participating nucleons have momentum close
to m,m:d.p momentum, and calculation can be analytically done in the case of P+Q
absorption. This approximation is called Fermi liquid approximation. To investigate
further eq.(33) is rewritten as . &

(i) _ o 1)
W = —ao2; iy (), (34)
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Fig. 4. Diagrams of absorption processes (2)—(f). The upper row shows the case when the
incident nucleon is a particle, while the lower Tow the case of a hole.

where v? r s the average square of the residual interaction matrix elements given by
33,2
6 ms Vo
2 n
Vi = — 35
11 = )t (5) o (35)
where m?, is the effective mass of nucleon,Vp is the strength of the residual interaction

and g is the single particle state density at Fermi energy. The factor EM\V .\Amﬂv is called
here the accessible state density, which is given by

Eww;mrv = \mm\w&muamaﬁmﬂ +E;— Es— mhvmw.:wﬁmmvzuﬁmmv:%mrv. (36)

The integral appeard in (36) is analytically performed in the case of P + Q absorption.
The results in the limit of In2 (B, — Er)gr > m are given by

. H 3 .>..N 3 w
Am= . 2 e 4 ’
W51 (By) = g | 5(Bs — Br)? = 3(Bn =~ Bl +( +3(tn2) vb__mﬁv

m n? m \?
3(EL— miﬂ +(g - 6(In 2)?) AE m.ﬁv (37)

2
m
9 2
3(In2) Agwmﬁv

In this calculation it was found that Pauli correction term in process (a) appears in
(b) and (c) processes 50 5 to cancell each other if all of them are summed over. In
the case of delta function residual interaction numerical calculation without Fermi-
liquid approximation is performed, and results are compared with those of Fermi-liquid
approximation. They agree well in the case of P + @ absorption, but if the absorption
is restricted to Q) space the agreement is limited at low incident energy.

EW\%H.XML — .ew_

WAm="Y(B1) = gF



68 S Yoshida et al

6. Conclusions

1 Sec. 2 the statistical assumptions, on which pre-equilibrium theories are based, are
wamined. Whether these conditions are realized or not depends especially on the
nergy. We relied only on the residual system statistics, and the leading paticle statistics
vas not employed. If both statistics are employed the situation might be improved.

The second topics are evaluations of parameters appeared in MSC theories and state
jensities. Using the semiclassical approximation and thermal theoretical approach the
,bsorptive potentials are estimated with good accuracy, and from which the transmis-
son coefficients, spreading widths, and the second moments for resdidual interaction
.re obtained. If we use experimental data as constraint, we can improve the evaluation
of Em-m@;.&l@iﬁg cross section and state densities. Furthermore surface absorption
offects should be also included, as it is known that both surface and volume absorption
are neccessary to fit optical potentials with experimental data.
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