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Within weak-coupling BCS theory, we have derived the Ginzburg-Landau equa-
tions of a clean superconductor with anisotropic single-particle dispersion and
order parameter, at a temperature close to the superconducting transition tem-
perature T.. The resulting expressions for the coherence length and penetration
depth close to 7. are discussed.

The superconducting order parameter of the high temperature superconductors
(HTS) is highly anisotropic [1]. Another source of anisotropy in the cuprates is their
single-particle dispersion in the normal state. The layered structure of HTS causes the
nearly two-dimensional character of the electrons; moreover, the closeness of the Van
Hove points to the Fermi energy discovered in recent photoemission experiments 2]
leads to a substantial in-plane anisotropy of the low-lying electron states. The pur-
pose of this paper is to determine the basic parameters of the superconducting state
(coherence length ¢ and penetration depth A) close to T, from microscopic parameters
allowing for both types of anisotropy.

‘The Ginzburg-Landau equations for a clean anisotropic superconductor were derived
from the microscopic theory by Gorkov and Melik-Barkhudarov [3] by making use of
the Green’s function technique. We sketch first a simpler derivation of their results.
We consider electrons described by the Hamiltonian
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Where the effective electron-electron interaction Vi y, is acting on electrons in a shell
of width 2hwp around the Fermi surface. We assume [p| < kr where k3 = 372n and
" 1s the density of electrons. We do not specify the origin of the energy scale hiwp but
We require that hwp < Ep where EF is the Fermi energy. We introduce the order
Parameter Ay = MU—Q Smhﬁ ?rW?QLmW?P»v in order to describe a spatially varying
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condensate Ae? T The mean field Hamiltonian reads (we omit additional c-

terms) Mimber
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where af = (¢! i iltonian i
. oy Anwiri olw+a_ev. This Hamiltonian is diagonalized by standarq tech.
niques and the resulting gap equation is -

- Ak
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where m,—m =
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Over repeated indices 1, j is understood. Sinc K o St
, . i, . e the sum over k’ in the ga equati
is restricted to the :mﬁrvol_oom hwp < Ep of the Fermi surface, we mnmm mwzw MMM

W,wiowf oum:m_uouimzmwggma to an integral over energy: 34 = §dKN, [ de where
homﬁmcw. mMﬁmwmw w%mm is the &mﬁm:ﬁ\ of states per spin in the point K of the mm,mmzi w:lwh,m.
L . ol@%% equation in powers of A and make use of the equation for T, EM

b y/mhwpe » where Iny = C ~ 0.577 is Euler’s constant and A = VN (0) L

V $ dK Ny 32, i i i
[ Nemm 1s a dimensionless coupling constant. After a Fourier transformation to .

real space we find

1
1
Y+ B + G (~ih Vi) (—ihv;) = o, 4

T = 2
MEQWQ : (87 /TCE)(N(O)T./n)(T — 1), B = aam\wmgxemmvzsvﬂm\:m“ and
eliective mass tensor of the superconducting condensate is given E\QH\S*. =
i

N(O ) i i
(N( v\:XemAeNv. We have introduced in Eq.4 a macroscopic wavefunction ¢ =

VIC3)n/8m2T2A. ¢ is the zeta functi :
: unction: {(3) ~ 1.20 i
average of Ay along the Fermj surface: ©) kgl omclen ths ellome
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nooawzwwwﬁ W@A&.mﬂ:ﬁ explicitly gauge invariant. We shall assume that a correct way
o € Whis deficiency is to replace —iAV; with D; = —;p i
elementary charge and A is th i e this veprammi e ¢ I the

. > 5 Lhe vector potential. After this 1 3
with the result of Gorkov and Melik-Barkhudarov [5]. epcement, T agree
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It is seen that the Ginzburg-Landau coherence length is, in general, a tensor:
g = mm\wﬁw_g_o\_. In what follows we will work in a coordinate system where i

.i&wmo:w_. Since the maximal zero-temperature gap A(0) is given by 2A(0)/T, =
AMA\QV exp(In [1/®yc 1) [4] where 2 /v &~ 3.5, we can write

i_p_Sb
¢ =B, (6)

where B = (w/47)\/7((3)/3 =~ 0.74, © = T/T., and we have introduced

o hy/3(v)?) M

°" mexp(in]Ag])

Eq.7 reduces in the isotropic case to the standard BCS result and we take it as a
definition of the BCS coherence length in the general case.

As an example, let us consider electrons with the dispersion Ex = R? (k2 + \awv\ws.
The Fermi surface is cylindrical with kp being the radius of its circular cross-section.
We will assume further that @y does not depend on k,. Thus we have & = 0 and
€8 = & = &o depends on the symmetry of the order parameter. Consider first P =1
(isotropic s-wave pairing). We find £o/€pcs = 1/3/2 & 1.22, where €pcs = hvp/mwA and
vp = hkp/m. This is consistent with the results obtained in Ref.[6]. For Qg = cos 2p
where tan ¢ = ky [k, (d-wave pairing) we find &, /€pcs = 1.49. Both types of anisotropy
are seen to enhance the coherence length compared to its BCS value. We emphasize that
the sign of ®y¢ is irrelevant for the whole of the present paper. Both for Dy = cos2p
and @ = | cos 2¢] (“extended s-wave”) we obtain identical results.

As an example of an anisotropy which shortens the coherence length, let us consider
a cylindrical Fermi surface as before but with a modulation of the Fermi velocity with
o v = vp —ucosdyp, [u| < vp (I = 4 is chosen as the lowest nontrivial harmonic
allowed by tetragonal symmetry). For @y = 1 we find &o/épcs = V3721 - u?Jv})1/4
and thus £ < €pcg occurs for ufvp > ;\w\w = (.75, i.e., substantial modulation of the
Fermi velocity is necessary. Note that our analysis does not apply for u — vg since
in that case the Fermi velocity and effective mass of the electrons close to the Fermi
level can not be taken as independent of energy any more. For an estimate of & of a
superconductor with isotropic pairing in this regime, see Ref.[7]. [The result of Ref.[7]
should be multiplied by \/3/2 as appropriate for a two-dimensional system.]

It is interesting that although anisotropic pairing alone increases the coherence
length, when suitably combined with a modulation of the Fermi velocity, it can give a
coherence length which is shorter than for isotropic pairing and the same modulation
of the Fermi velocity. In fact, consider P = cos2p and v = vp — ucosdy. For
u/vg > 0, the maxima of |®k | coincide with the minima of vy, whereas for u/vp < 0,
the reverse is true. We have calculated &o/&Bcs in the whole range —1 < ufvp < 1.
The result is presented in Fig.1 as a solid line. For comparison, the same quantity is
plotted also for the isotropic s-wave solution Pk = 1 as a dashed line. Two features
are worth mentioning: (i) for d-wave pairing, £o/Bcs depends strongly on the sign of
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u/vE and (i1) for u/vp > 0.31, the coherence length is in fact shorter for d-wave Umicm
The latter feature is due to the fact that the gap in the d-wave solution has most of :m.
“weight” in the regions with a high density of states. 3
It is well known that the other characteristic length of a superconductor, the pen
etration depth AT, also depends on the modulation of the gap. In fact, the lineay
response coefficient K#J relating the current density j; and the local magnetic fie]q
described by a vector potential 4; in the transverse gauge V.- A =0, j; = lks.a&.? is
given by Kid — MMU—m:AmWV\ﬂ;m% + em.nemnmlmwv\mm‘ﬁ where f(¢) is the Fermi distri-
bution function [8]. Integrating the first term by parts and making use of the Matsubarg
representation we find 1

. L A2
K* = mux&mﬁ,\ vy vl 20T K )
K"K K M:U Abmr\m +>Wmvw\m Amv

Coherence length and penetration depth of anisotropic superconductors. . . 615

3.0 Y T T T Y
2.5 m
12.0 m
m o
w.w 1.5 <
[e»]
1.0 >y
o]
0.5 !
0.0 —_
-1.0 0.5 0.0 0.5 1.0

u/vg

After diagonalization of the Ewﬁc.xkh.,gn&wﬁwjmu._fddwx»w‘_\érgo €0 and ¢ are the
permittivity of vacuum and speed of light, respectively, and ); is the penetration depth
n the direction i. In what follows we assume again that the coordinates are chosen 80

that this is the case. At T — 0, we find from Eq.8

2 ;
0 = e ok ©)

where ¢? ~ 1/137 is the fine-structure constant. It is thus seen that the ground-
state penetration depth does not depend on the symmetry of the pairing state and is

on the energy scale A.] However, depending on the pairing state, the function A;(T) is
expected to exhibit qualitatively different behavior for 0 < T « T.. There exists large
literature on this aspect of anisotropic pairing [1]. We would like to point out here that
one can extract information on the pairing state of a weak-coupling superconductor also
from the r:os_m&mo of X(T) close to Te. In that case we have

(P Nvg)/2%) A0

(R Vaa-e)

Ai(T) = 38

For isotropic pairing, Py = 1, we recover. the standard BCS result. The first ».mhﬁom.

on the right-hand side represents therefore a measure of the effects of the pairing-
state anisotropy on the penetration depth. For instance for a d-wave superconductor

3

with a cylindrical Fermi surface discussed above, the normalized slope of the inverse

penetration depth squared close to T, is —d(A*(0)/A%(T))/dO = 22(2 — z)/(3z +1—
V1 —2?) where 2 = u/vp, see Fig.1. The importance of bandstructure effects for the:

slope of \/MBV\\/MQJV has been noted previously in Ref [8].

Fig.1. Normalized coherence length & /£pcs of a imww.no:v_.m:m _wm.um mcvwwnoumcgoﬂ with a
cylindrical Fermi surface as a function of u/vr. The Fermi .<m~on_$~ varies as vK = vp —
ucos4p. Solid line: $pc = cos2¢p (d-wave ﬁm.:.m:mw. Um.mwrm& line: ¢ = .w (isotropic s-wave
pairing). Dotted line: The normalized slope —d() on [X5(TY) \&@ of the inverse penetration
depth squared close to 7. for Py = cos 2¢. The vertical scale is the same as for &o/€pcs. For

P =1, —d(N*(0)/A*(T))/dO = 2.

The generalized Ginzburg-Landau equation for the superconducting o::ms.a can be
obtained from j; = — {#J Aj for T close to T, by requiring that the theory is gauge
invariant. We find

e

i) = o [iR(*T — V) — de Ay ()] (1)

For completeness, let us mention that Eqgs.4 and 11 can be derived from a maom. energy
functional with the local free energy density in the superconducting state fg given by
1 epc?

waN.Asz Dy + 5

(V x >v~. (12)

fs = fw+alol + Syt +

In Eq.12, fy is the free energy density in the normal state. The :o::m:Nwﬁo.: of the
last term on the right-hand side is known from the theory of electromagnetism w.:a
this is sufficient to determine the free energy density in a unique way. For the specific
heat jump at 7., one finds from Eq.12 (¢s — en)/en = Ew\qﬁwvv\ﬁvwﬂvﬁ\ewv <
12/7¢(3) ~ 1.43, in agreement with Ref.[4]. ‘
In conclusion, we have derived expressions for the coherence length and penetration
depth of anisotropic superconductors close to 7,. Our ‘nm_o:_wao: should be .S_oﬁze to
clean anisotropic weak-coupling materials. An analysis of the results Om.vo~:e-oo:~m0a
SPectroscopy on HTS based on the present work has been attempted in Ref.[9]. It
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was argued there that it is crucial to take into account not only the anisotropy of
the cuprates, but also the strong-coupling effects, short quasiparticle lifetime, and t},

critical fluctuations close to T.. Further work is needed to clarify the interplay of ﬁrmm
effects.

>n§o€~mmmm5m=nﬂrom=§onEO:E :roﬁo;w:w0.0mzm:,Z. QE.WS_.,NEQ A
Plecenik for interesting discussions. :
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