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In the present paper, the generalized dynamical theory of thermoelasticity due to
Lord and Shulman is employed to investigate the thickness vibrations of a non-
homogeneous piezoelectric layer of monoclinic symmetry. The vibrations in the
layer are generated owing to the application of an alternating potential and tem-
perature difference to the faces of the layer which are assumed to be coated with
infinitesimally thin electrodes. Variations of the piezoelectric potential, particle
displacement and temperature with the distance along the thickness direction have
been determined.

1. Introduction

Thickness vibration of a piezoelectric layer bounded by two parallel planes is a
very important mode of vibration. Several researchers have attempted this problem
under various kinds of physical conditions. Among these, the papers by Tiersten [1,2],
Bleustein and Tiersten [3], Byrne et.al [4] etc. are worth mentioning. But none of these
authors have considered the coupling of thermal field in their investigations.

The pioneering attempt in this direction was made by Krystyne Knap [5]. She
studied the thickness vibration of a piezoelectric layer produced by the harmonic changes
of electric potential and temperature at the bounding faces of the layer under classical
thermal coupling, vide, Boley et.al. [6].

The classical thermal coupling rests upon the hypothesis that the flux of heat is
proportional to the gradient of the temperature distribution. As a result of this hy-
pothesis, which is usually referred to as the Fourier law, the temperature distribution in
a body is governed by a parabolic partial differential equation which predicts that the
application of a thermal disturbance in a finite region instantaneously affects all points
of the body. This behaviour which implies an ‘infinite speed of propagation’ of thermal
disturbance has been the chief reason for doubting the validity of the Fourier law and it
has motivated proposals to modify the Fourier law. Such modifications were discussed
by several authors like Lord and Shulman [7], Green and Lindsay [8] etc. Theories
developed by these authors are called generalized thermoelasticity theories.
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Application of such generalized thermoelasticity theories to piczoelectric vibratiop
problems is quite new. Very few problems have so far been discussed. In this connection
mention may be made of the works done by Ray and Pal [9], Bassiony and Ghaleb 10],
Chandrasekharaiah [11] etc.

In the present paper, an attempt has been made to investigate, in the context of the
linear generalized thermoelasticity theory of Lord and Shulman [7], the thickness vibra.
tions of a non-homogeneous piezoelectric layer of monoclinic symmetry. The vibratiopng
are generated owing to the application of an alternating potential and temperature
difference to the two faces of the layer which are assumed to be coated with infinites.
imally thin electrodes. Variations of the piezoelectric potential, particle displacement
and temperature with the distance along the thickness direction have been derived.

2. The fundamental equations of the problem

Newton’s vibration equation, Gauss’s divergence equation and the equations of state
of the piezoelectric material - constitute the governing equations of the problem.
The vibration equation and the divergence equation are

P = Tyj (2.1)
and
D;;=0 (2:2)

The constitutive equations of the material on which the disturbances are assumed to
propagate are .

Tij = CijkiSki — emij Em — Xij©
D; = €kt Skt + €45 E; + p;©
o = AuSw+piE; + 50 (2.3)

(vide, Mindlin [12]) where Tij are components of stress, Sy, are the strain components,
D; are the electric displacement components, E; are the electric field components, &
is the entropy, u; are the displacement components and © is the temperature, Cijil,
emij and €;; are the elastic stiffnesses, piezoelectric constants and dielectric oozmemi.m
of the material. \;; and p; are the thermoelectric and pyroelectric constants of the
material, vide Mindlin [12]. 2 is some thermal coupling constant and p is the density mm
the medium. Here the summation convention for repeated tensor indices is oSES&m
and an index preceded by a comma denotes differentiation with respect to some mv%w
coordinate. Dot notation signifies time derivative A
In addition to the equations presented above the following are also important for
the problem.
The strain components

1
Skt = 5 (kg + w k) (24)
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and if ¢ 1s some potential function, then the electric field components are given by
i = = (2.5)

Moreover, since we assume generalized thermal coupling as in Lord an Shulman [7], the
modified form of the Fourier law can be taken in the form

gi + 10gi = —ki;0 ; (2.6)
The linearized energy equation is the following
—~¢ii = Ogo (2.7)

(vide, Mindlin [12]) where ¢; are the components of the heat flux vector, kij are the
heat conduction coefficients, 7y and @y are the thermal relaxation parameter and some
reference temperature.

The elastic stiffness constants Cijki, the piezoelectric constants €mij appearing in the
constitutive equations are with four and three indices respectively. These constants can
be expressed in two-index notation, vide Mason [13]. After reducing all the constants to
double index notations, we use the following matrices for the elastic, piezoelectric and
dielectric constants for piezoelectric crystals of monoclinic symmetry, vide, Tiersten [2].

Ciit Cip Ciz Ciy 0 0

Ciz Cy Cy3 Cou 0 0

Ciz Coz Caz Csy 0 0 (2.8)
Cila Caq Ciy Cyy 0 0 :

0 0 0 0 Css  Csg
0 0 0 0 Cs Ceg

e1r ez €3 €4 0 0
O O O 0 €95 €3¢ Aw.wv
0 0 0 0 ess es6

£11 0 0
0 €99 £23 Aw.::
0 €93 €33

The matrices of all other second order tensors Aij, ki; etc. have the same form as shown
in equation (2.10).

As observed in the introduction, since we wish to investigate the thickness vibration
of the piezoelectric layer of monoclinic symmetry, we consider the layer to be infinite in
extent and bounded by two parallel planes located at zy = -Lh.

HE&Emmm vibration corresponds to solutions which depend only on the x5 - coordinate
and so 4, ©, ¢ etc. are all functions of the z4 - coordinate and time ¢ and are independent
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of z; and 3 coordinates. Since we assume the layer to be non-homogeneous, we take

the material constants in the following form

{Ca2,Ca4, Ca4, Ces, €26, €22, A2, Ao3, ka2, p2, B, p} u
= AO%@ me me QM@ .mwo; mwmg \/Wm. \/wm_ »\.wmvﬁw, Eo. bowmcﬁu AMHC

where « is the non-homogeneity parameter. :

On substituting the first equation of (2.3) in equation (2.1) and using equations
(2.8), (2.9), (2.10), (2.11) and then rejecting the derivatives with respect to z; and I3
coordinates, we find the following three equations

Py = Cls(our s+ uy29) + eds(@d 2 + ¢ 22)
plia = Cyauzs+ ug,22) + Coqlaus 2 + ug 22) — A3, (2@ + 0 5)
Pliia = CSy(aunz + uz 22) + Cly(aua s + us 25) — Ag(a® + ©,2) ,

(2.12)
Using the second equation of (2.3) and Gauss’s divergence equation (2.2) together with
the corresponding coefficient matrices and (2.11) and rejecting derivatives with respect
to z1 and z3 we find

eg6(au12 + u1,22) — €95 (0 2 + ,22) + pI(aO® + © 5) = 0 (2.13)
To obtain the other necessary equation we eliminate the heat flux vector ¢; and the

entropy o from the last equation of (2.3) and from equations (2.6) and (2.7) and using
(2.11), then rejecting as usual the derivatives with regard to z, and z3 we get

\GO E % . .
%Epw + ©,22) = AYy (2,2 + Totla2) + AS5(ts,2 + Totia o)
—p3($,2 + T0d,2) + B°(O + 70) (2.14)

The three equations in (2.12) and equations (2.13) and (2.14) are the five fundamental
equations of the problem.

3. Waves in the thickness direction

In the present problem, the solution will be sought in the form

{ur,u2,u3,¢,0} = {A;, PA;,QA,, RA, T A} exp{i(nzy — wi)} (3.1)

Now substituting the above expressions in the system of equations (2.12), (2.13) .m«_m
(2.14) we find the following characteristic determinantal equation for the non-trivial
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values for Ay, PA;, QA;, RA; and T'A; respectively.

C (ian — 1) 0 0 eZs (ian — n?) 0
+p°?
0 Ch(ian —n?)  C3y(ian — 1) 0 2% (@ + in)
+§O€N
0 Cos(ian —n?)  Cly(ian —n?) 0 2% (@ + in)
+0°uw?

€36 (ian — n*) 0 0 —epa(ian —n?) p3(a +in)

0 Ao nw x A5 x —pInwx —{B°(iw + mow?)

(1 —irow) nw(l — itow) (1 — irow) +(k9,/©0)(ian — n*)}

=0 (3.2)
Substituting the values of all material constants and expanding the determinant we get
a tenth degree equation of 7 in terms of w.
Substituting the expressions (3.1) in equations (2.12) and (2.13) and then solving
we find
1
Amuv@.mqﬂw“ |Mﬁ>?>m_>w_>Aw Awwv

where A; (i=1,2,3,4), A are the following determinants

DH = _quw.Q»qu _
DM = _QM.QHMQ»_QM _
Duw = _QN“QNMQH‘QM. _
Ay = | C2,C3,C4,Ch |
A = — QN,Q.W.Q&«Qm _ AW%V
Ci(i=1,2,...,5) are the columns of the determinant in equation (3.2) omitting the
last row. ‘
Since the determinant equation (3.2) is a tenth degree equation in 7 having ten complex
roots n; (j = 1,2,...,10) for each value of w, the general solution can be UEF up in
the following form
0
w o= Y AP exp {i(n;zz — wt))
J=1
10 A
uy = MU P AY exp{i(nizy ~ wt)}

g=1
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10
uz = M@T»M:QKXSSIE“:

j=1 ‘
10 .
¢ = Mumb.\»m:mxﬁ?.suéule“i
j=1 ,"
10 . ;
0 = Muﬁbmimxvtﬁﬁamlgz ”
7=

(35)
where P;, @Q;, R; and T; are the values of the amplitude ratios P, Q, Rand T for
1 = 1n; to be obtained from equation (3.3).

4. Boundary conditions and solution of the problem

Since in the present problem we study the vibrations produced by the harmonic
changes of temperature and electric potential at the bounding surfaces of the piezoelec-
tric layer, the boundary conditions can be taken in the following form

¢ =+goe” ™ on z,=+h ﬁ:
O =200 on =z,=4h (4.2)

The two surfaces 5 = +h of the layer are assumed to be stress free. So
T =0 T = rw,uv on ry=4h mev

Using the above boundary conditions we find a set of ten equations in ten unknowns \»MD.

Adding and substracting these ten equations pair-wise we can write these equations in
the form

di; A9 =0, (,5=1,2,...,10) (4.4)
where d;;’s are the following
diy = [C&+ mwmm&.vS cos n;h
drj = (C8s+ €36 R;)n; sinnjh
dsj = [i(CPj + C34Q;)m; ~ A3, T;] cos n;h
dj = [{C:Pj + C24Q5)m; — A3, T;]sinn;h
ds; = [i(CP+ QM»QN.E&. = \/wuﬁ._ cos1;h
dej = [i(Co4Pj + CLQ;)n; — A33T;]sinnih f
d7j = C@g - MIWM Q.VOOm nih
0
do
dgj = (R;— @M j)sinn;h
doj = Rj;cosnjh

dio; = Tjcosn;h (4.5)
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For the non-trivial solution of the set of simultaneous equations (4.4) we find
[dij |=0 (4.6)

This is a tenth order determinant. & . .

Now let us divide each of these equations (4.4) by A]’. Solving any nine of these
equations we can find the ratios k»mt\bm:. Jj = 2,3,...,10. Denoting .35 m&oi.w nine
ratios by l21,1la1, .-, l101 respectively, the displacement components, piezoelectric po-
tential and temperature can be expressed in the following form as the sum of the partial

waves.
(1) - ) (120 — wi
u = A ~M~t@€?§%§ wt)}]
j=1
10
Uy = ﬁubm:ﬁmwﬁoxg:ﬁamIEaz
i=1
10
us = QA Qi expli(nize — wi)}]
i=t1
10
Av = mw\wm:ﬁmm.?mxwlﬂm?ﬁﬁm|Eav:
i=1
10
© = AP Tjexpi(njzs — wt)}] (4.7)
j=1
where

P Qi Rj Ty,
Aﬂ.r@tu.@.rﬁlHﬁm‘g“wﬂ“ﬂ f

&“N,MI%T.JHO and ~: = 1.

Substituting the values of the material constants in the above owimmmmo‘sm, the variations
of the displacement, piezoelectric potential and temperature with distance along the
thickness direction can be evaluated. .

Substituting the non-homogeneity parameter a equal to zero E.ero relevant equa-
tions, it can bee seen that the results obtained agree with those derived by 2@:&% [15]
for the thickness vibration of a homogeneous generalized thermopiezoelectric layer of

similar type.

5. Discussion

To summarize the above analysis, we recall that the characteristic equation (3.2)
relates the wave number 7 and the frequency w. The wave number and the ?m@ﬁ:n%
must also satisfy the determinantal equation (4.6) derived from the boundary conditions
of the problem. Though, in principle, these two equations can be solved and values for
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the wave number 5 and the frequency w can be determined which would satisfy bot}
the determinantal equations, it is not feasible in practise owing to algebraic 550@8..
vide, White and Tseng [14].

The problem can only be solved numerically by assigning a particular value for
the frequency w in the characteristic equation (3.2) and then solving it for the Wave
number 7. The values for the wave number thus obtained together with the preassigneq
frequency w are substituted into the determinantal equation (4.6) obtained from the
boundary conditions to see whether the boundary conditions are satisfied. If not, a new
value for the frequency w is chosen and the process is repeated until both the equationg
(3.2) and (4.6) are satisfied. Once the values for frequency w and the wave number 7; are
obtained, the expressions for the displacement components, potential and temperature
can be determined by substituting their values in the relevant equations.

Due to the non-availability of the material parameters for a thermopiezoelectric layer
of monoclinic symmetry under generalized thermal conditions, the numerical analysis
of the problem is left for sometime in future.

Acknowledgement I am grateful to Dr. A.K. Pal of Department of Mathematics,
Jadavpur University for his guidance in the preparation of this paper.
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