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General solution of Chew-Low equations for =N scattering in terms of §-functions

is obtained. Previously known solutions can be derived from the new one by
limiting procedures.

1. Introduction
For the first time Chew-Low equations [1] were derived for the symmetrical inter-

action of charged pseudoscalar mesons with fixed nucleon, which is described by source
function. These equations are the subject of interest by now [1-5,7] and are the follow-

ing:
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where w = \/q% + p? is a meson energy with the momentum ¢ and mass p. Scattering
amplitude is
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where §;(w) is a real scattering phase in the state with the total isotopic spin j/2, u%(g?)
is a Fourier transform of the source function and A;; is a crossing symmetry matrix. In
[4] equations of the type (1) were reformulated in terms of matrix elements of S—matrix,
provided the basic properties of these elements are fundamental analytical properties
of scattering amlitude. As a result equations (1)~(2) can be reduced to the following
system for the functions S;(w) = e2%i(@) = 1 4 2ig®u?(¢?)h;(w): A

1 S;(w) are analytical meromorphic functions in the complex w-plane with the cut
along real axis: (—o0, —1]U[1, 400).

2 Sj(w) = Sj(w*) , ie. Sj{w) are real functions on the real axis.
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3 1Sj(w +i0)]> = 1 for all w > 1. This property is a consequense of two-particle
unitarity equation on the cut [1,+o00).

4 Sk(-w) = Ag;Sj(w). It is a crossing symmetry condition.

These properties are independent from the number of functions S;(w). Thus if ope

has a crossing symmetry matrix A;; with all necessary properties he has a well defined

problem to find appropriate functions Sj(w).

Chew-Low equations for higher partial amplitudes (p,d,f,.. .) can also be reduced to

the above system 1-4 with appropriate matrices A;;. In [4] a general method of solving

1-4 with A;; of arbitrary dimension was developed. In this work we will obtain by this
method most general solutions of 1-4 for arbitrary scattering states.

2. s—wave solution

For the zero meson angular momentum crossing symmetry matrix is the following

\_HWA% Mv 3)

It corresponds to isotopic spins of interacting particles 1 and 1/2. Tt was shown in [4]

(4]

that by means of representation S;,7 = 1,2 as a sum of symmetric and antisymmet-

ric parts one can reduce a problem to the linear nonhomogeneous Riemann boundary
problem. The solution of this Riemann problem is the following:

_(WHB(W) =2\ _ W+ 5(W)
ST = AS\+ QMAS\V + Mv W+ B (W)]2 = HD_S\Q:, (4)

where W(w) = Larcsinw, n = 14 and

s w

S = U __
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- In (5) A is an order of a pole or a zero at the point w = 0, and 7k 1s a symmetrical with
respect to the axis Imn = 0 and axis Ren = 0 set of zeroes D(w) on the both sheets of
it’s two—sheeted Riemannian surface [4]. In (4) fo(W) is a meromorphic function which
performs a connection between scattering amplitudes with isotopic spins 1/2 and 3/2,
i.e. between S; and Sy. This function must satisfy the following functional equations

Bo(~=W) = —Bo(W), Bo(W) = Bo(W +1). (6b)
A general solution of equations (6) can be obtained in terms of theta—functions:

Bo(W) = P(6:(2W)) x

N

I (@01 2w)) + @ (0:2W)) + QP85 (W) + Q¥ (6, (W)]
o (R0, 2w)) + RO 0,02w)) + RE (05(W)) + RS (g, (w))]
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here P(x) @@X.& mc&?v j=1,...,4k = 1,..,N are polinoms with real coeffi-
where % 14y ] )

k _ plk) -
sients, and P(-z) = —P(2),@%(=2) = Q1V(2), R"(-2) = RO(@),k = L. N,
_m_MzOmrmq polinoms are arbitrary, N is an arbitrary { but finite) integer. It is easy to
MMm that class (7) includes particular solution of the form

C
Bo(W) = 0 (2W)05(W)84 (W)’

®)

here C is a constant. It is easy to show by the limiting prosedure that this solution
E .
turns into the solution

Q\
Bo(W) = costW sin W .
which was used in [4] to explain strong dependence of scattering length ?oﬂ _moﬁov—.n
spin. Solution (8) itself also leads to the equation [4] a; -+ 2a3 = 0, where a;,i =1, M_*a_m
wvmnmgolum length. It means that solution (8) leads to a physically reasonable results.

3.Solution for arbitrary partial waves

If a meson with angular momentum [ scatters on a fixed nucleon with the momentum
1/2 then crossing symmetry matrix is the following (4]

HLMIM @
}nlﬁtmﬁ Hv

Let us represent Sj,j = 1,2 as a sum of symmetric and antisymmetric parts

S(W) = Qv s(W) + Anmﬁv a(W) . (10)

Then we introduce a new unknown function ¢(W). Functions MAS\YQAS\Y ir_&m are
coeffisients at symmetric and antisymmetric parts of S(W), depend on this new func-
tion:

s(w) + a(W) = ¢(W) (11a)
= ||||||§S\v (118)
W)= e+l
After this one can reduce the problem of finding S; to the following system
p(W)g(1-W)=1 (12a)
¢(w) = $=W) . (12b)
FTW 4 Bo(W)+1 7 —17TW = Bo(W) +1

tional
By taking a logarithm g(W — 1) = log ¢(W) system (12) can be reduced to the functiona

equation W + Bo(W + wv+ +1

1
W+ Bo(W+35)+35 -1

g(W) +g(W + 1) = log
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where g(—W) = —g(W), and f, satisfies equation (6).

At integer [ one can solve equation (13) iteratively using a representation o
iag
.QAS\V ”~O@S\+QDAS\+WV+Q~ + w A

Wt B (Wi L)—a; *9W) (14)

where at the first iteration ay = 1 + (I — 1) [4]. Thus we obtain

Gar (W) + go (W) = ~ log L PoW) + 5+ (1~ 1)
W+B(W)+1i-(-1)" (15)
Then let
1 W+ B(W) +ay
(W) = —log ———F~—=
.Q A v Om g +Nwoﬁqé\v — as +.QQNA§V s AHQV

where oy = L —(I— i ,

jvher omw w_mo MM ?MYA Hm%:.mso_,_.m (14)-(16) define the iterative procedure. At :oiunomo.a

| one can also solve ) iteratively. In this case crossing—symmetry matrix A;; does

not connect mMm:EmM mﬂfﬂgwﬁ% group of transformations, with respect to SEMW the
Taction s ase o be invariant. In fact noninteger ! is a parametrization in (9

e fact that the process of solving (13) does not depend on fg, one me

put o = 0. After this simplificati 1
plification and - i i
general solution of equation {13) in the mohw_zm (H)7(16) at arbirary {we obiain the

r Al ?<+uw+: + ﬁvﬂ AITS\mrcv

9(W) =log | ¥(W) T AE + Hv r AIEV E
2

) B

which depends on the function ¥ 1 1 i
e B n ¥(W). This function must satisfy the following func-

Y(W)O(-W) =1, §(W + 1)¥(W) = —1. (18b)

Equations (18) have the following solution in terms of theta—functions:

(W) = 6 (3(W - 3))

(w1 -
One can rewrite (19) in terms of elliptic Jacobian functions:
Oy sn(K(W - 1L

" b3 cn ANAS\ - wvv

Here 0; = 0;(0),: = 3,4, K(k) is a iptic i w he m

i 0 s 4, n elliptic integral of th i i d

k. In particular case, when modulus k = 0, Emm:mé K Hm mnmm‘w:l:QOn :HRM AM \M v%slm
s 4/V3

E?=V1-%k2=1.Then B B
v _ Tow 2L
(W) = tan 2 (W - 1), (21)

which is the result obtained in [4].
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General solution (20) is a two-periodic function with the periods 4K and 4K +4iK',
K'(k) = K(k'). S-matrix s defined now by means of equations (9),(10).

On the basis of these results one can easily derive general solution of Chew-Low
equations for arbitrary meson total momentum. In this case crossing-symmetry matrix
Aij 1s 2 direct product of two matrices of the type (9), provided one corresponds to
meson isotopic spin 1 and nucleon isotopic spin 1/2, whereas the other
corresponds to the sum of meson total momentum [ and nucleon total momentum
1/2. General solution is a product of two corresponding solutions and depends on two

functions of the kind (7).

the sum of

4. Summary and conclusions

General solutions obtained can be used to establish the connection between param-
eters of class (7) solutions and scattering length experimental values as well as other
experimental characteristics of low—energy N scattering. This question is out of the
pe of this paper and will be considered elsewhere.

It must be stressed that similar solutions in terms of theta-functions one can derive
for crossing-symmetry matrices A;j of arbitrary dimensions, which correspond to the
arbitrary total momenta of a particle (meson) and a fixed particle (nucleon).

Another interesting problem is to connect quntum and corresponding classical sys-
tems following the way of [8]. It will be the subject of further investigations.
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