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The Newman-Penrose formalism and the Uy theory are used to obtain the equa-
tions of the gravitational field with spherical symmetry and torsion. For these
equations, the exact solutions are given: Reissner-Nordstrém de Sitter and gravito-
dyonic solutions.

1. Introduction

At it is well known, the Einstein’s Theory of General Relativity (TGR) left unsolved
some aspects concerning the study of the gravitational field, the covariant expression of
the preserving laws or the interaction of the gravitational field with the fermionic field.

Aiming to extend the TGR in order to study other than the usual properties of
the gravitational field, new gravitational field theories with torsion were built, theories
which use a Riemann-Cartan space with independent connection and metric, spaces
endowed with both curvature and torsion.

The gravitational field theories developed on Riemann-Cartan spaces think the tor-
sion besides curvature as a fundamental measure [1], {2].

In TGR the matter appears only as a carrier for the energy-momentum, but a
phenomenological description of matter, owning only energy-momentum, is insufficient
for describing it’s properties.

Therefore, an important problem consists in establishing the physical aspects con-
cerning the torsion and it’s microscopic origin. Thus, some theories bind torsion to the
properties of the bodies which produce the gravitational field, e.g. the spin [3], [4]; other
theories are motivated through grounds linked to the quantization of the gravitational
field [5].

Concerning the physical meaning of the contortion three mean points of view were
highlighted: a) the contortion do not propagate, thus it is an auxiliary field without
physical meaning; b) the contortion propagation involves an intricate mechanism de-
termined by some very massive particles called tordions or, c) contortion is defined by
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two massless fields with the spin two. If it is defined by these two fields, then a new in-
teraction endowed with macroscopic effects must exist. Until now, there is no evidence
for such a macroscopic reasonable source of contortion [6].

If torsion (contortion) is a real measure, experimental procedure to evidence it must
exist. In {7] one can find exposed some experiments, but unfortunately, they can not
be yet achieved because of the technical difficulties.

One of the used methods in order to study the gravitational field endowed with
curvature and torsion is the Newman-Penrose formalism [8] which yields the exact
solutions of the field equations [9], [10], [11], [12], [13].

In the present paper, by using this formalism in the frame of the U, theory, we derive
new exact solutions for the gravitational field with spherical symmetry and torsion. For
vacuum we get gravito-dyonic type solutions, and in the case of a field created by a
charged body, a Reissner-Nordstrom-de Sitter type solution.

2. The Field Equation in U, Theory

In Einstein’s General Relativity Theory it has adopted a space-time which retains
locally, in the neighborhood of a point, the characteristics of Minkowski space-time.
As such a space, Einstein chose a Riemann space, V4, whose properties derive from
the metric tensor 8ij; the components of this tensor are interpreted as the gravitional
potentials and they determine the energy-momentum tensor.

The Riemann space V4 of General Relativity is a curved space and of null torsion.
But, in general, it is possible to choose an affine space with a metric g;; independent of
affine connection. Such a space has, in general, nonvanishing curvature and torsion f
the connection is nonsymmetric).

In a series of works [1], [2], [3] a generalization of Einstein’s General Relativity has
been proposed, by using a space-time with independent affine connection and metric,
Uy, called Rieman-Cartan space.

The connection E.w. of Uy space is written in the form

\a
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where A_ww are the Christoffel’s symbols taken with respect to the metric g;; and NM

are the components of the contortion. The contortion is related by the torsion tensor
m@. by the relations

Ky = =55 + 9" 9im ST — g¥'gjm 5P (22)
In this case, the gravitational field equations of the U, theory have the form [91, [10]
G — (Vi + K} (Ki* 4 gid Kt — g*K7i) = —xT, x = const (2:3)

where Gj; - is the Einstein’s tensor, gix - the metric tensor and Ty. - the energy mo-
mentum tensor.
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For the connection (2.1) and the spherical metric
ds? = —e?*dr? — r?(d©? + sin? Odyp?) + e2dt? (2.4)

where the function A and v depends only on r (static case), the following spin coefficients
are chosen

1 1= 1 [N
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¥ w(@tm +f w<m=m g
= ! e 4 . o e + (2.5)
p= 2/ 2r P h= 22/2r ¢ '
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In the relations (2.5), the functions f, g, p, ¢ are the tetradic components of the con-
tortion which is to be determined from the field equations, and the sign ” ’” represents
the derivative with respect to r. The relation between KM. and the tetradic components
is given in Appendix A.

The spin coefficients (2.5) are used to write the equations of Newman-Penrose, the
Bianchi’s identities for the curvature and torsion [8 - 10] in order to find thé elements
of the curvature tensor in tetradic basis. Using the transfer equations from the tetradic
basis to the coordinate one, the elements of Ricci and Einstein’s tensor in coordinate
basis are found.

In this condition, for the metric (2.4) and the spin coefficients (2.5), the distinct

equations {2.3) in the particular case v = —\ are of the form
oy [2Me 2 - l
amyﬁiﬂl .ﬂMQ!m N»VIEIE = T

(2.6)
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In the case of vacuum (T = () the system of equations (2.6) is reduced to two
equations with three unknown X,p,q. We make the observation that, generally, the
number of the field equations for spaces with torsion is smaller than the number of the
unknowns. As a solution have the two equations the Schwarzschild metric which impose

p=¢=0.

3. The Reissner - Nordstrom de Sitter Solution

As a source of the gravitational field with spherical symmetry and torsion we consider
a body of mass m and electric charge . The energy - momentum tensor will have two

distinct elements:
1 _ qe—2X

. 22 &
ré ’ T 6 (3.1)
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where
K 2
a= Q ; K= L
8w 4meg
€ being the vacuum electrical permitivity.
In this conditions, the equations of the gravitational field are: i
2Xe"2 .
el £ TS > S SRR r
Tt (l—e™) —pg PI=Xx— .
(3.2)
fo=2X
Mie™2X _g(ay2e=2r 4 2A M - %E ~Pi—pq - p3) = ~x—
r

If we choose the contortion equal (p = ¢ = iF), the system (3.2) has the moESQ,E
(Appendix B)

N r a’ 2
e tu_lﬂm+ Q + Cyr? (3.3)

=)
with
3 H
F= Amﬁ»v (3.4)
Mwoa (3.4) m‘ﬁ 1s noticed that, for the contortion elements, a constant is obtained. But,
in the coordinate basis, the contortion elements depend on the metric. For example [14]

A
234 _ _ 4Fe
2v/2r2sin ©
Thus, the consideration of a more general space with curvature and torsion, in the case

of field generated by a body of mass m and electric charge @, leads to the Reissner -

Nordstrom de Sitter metric. It is noticed that the last term of the (3.3) solution appears
exclusively due to torsion.

K

4. Exact Solution of the Gravitational Vacuum Field Equations

If the calculation of the second term of the left side of the equation (1.3) Christoffel
wo::ooSoz is used for the calculation of the covariant derivative (for the rest contortion
1s rarely kept), in the same static case and with v — —A, the following equations are
obtained for the vacuum space [14] ;

oy

2Me=2 ]
5 (=) —pg—pg=0 A :w
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Xgri2h 2(\)e 2 ¢ .m»w.f ~8fg=0

Writing pg = p7 = —v, fg = u, and the selection u = %, the equation system K.C
has the solutions (Appendix C): \

e === (4.2)
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From (4.1) and (4.2) results

a? a?

—E s (4.3)
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One can notice that torsion is similar to a gravitational field generated by a complex
charge (@ = iQ), i.e. a gravitational monopoly. In [15], assuming the torsion as an
electrodynamic potential, the equations of motion for a particle with both electrical and
magnetic charge are derived. Consequently, the existence of the gravitational monopoly
is suggested.

If all the functions defining the tetradic components of contortion are chosen to be
real, the unique solution for vacuum, yields also as the Schwarzschild metric.

5. Conclusions

The solution indicates the fact that some cosmological models may be built without
any supplementary assertions, like the insertion of a cosmological constant, but nat-
urally, endowing the space with curvature and torsion. On such an alternative, the
torsion takes over all the cosmological constants assignments. The same result was ob-
tained in [16], but using a gauge gravitational theory. The solution shows that the space
torsion can be generated by some ”imaginary sources” of the gravitational field. In our
opinion this result may be due to the complex mass gravito-dyon [17 - 20]. According
to this idea any field source (electromagnetic or gravitational) can be written in the
following complex form

g=g+ig" | b=l

In the case of an electrical charge the real part of g is linked to the electrical charge, and
the imaginary part to the magnetic monopoly. For the gravitational charge, the real
part is related to the gravitational mass but the imaginary part to the gravitational
monopoly. That is, the real term of the mass determines the space: curvature, and
the Heaviside charges (gravitational monopoly) the torsion. Therefore (4. 2) is the
gravitodyonic solution of the gravitational field with spherical symmetry, curvature
and torsion. Starting from the suggestion that space torsion may be generated by
the Universe ”dark matter” (related to the imaginary mass part term), astrophysical
experiments can be settled [21 - 22]. Moreover, these experiments may indicate the
very type of particles which constitute the ”dark matter”.

Appendix A

The components f,p,g,q are the tetradic components of the contorsion and have
the form
K@y =2f  Kpany=2%

Kuaany=p K@ay=p (A1)
q K3y =g

K(324)
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P, ¢ being the complex conjugates of p and q.
The relations betw t i i i o
. een the tetradic components and the coordinate basis compone
K% = K (g% ebi ok
Kijk being the contorsion components in coordinate basis and Kape - in tetradic basig'

b5 2
€” is the contravar : 3 .
forme 1ant tetrade coresponding to the spherical metric, rminmﬁmw
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e = m m B
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Appendix B

For p= ¢ = iF, the equations (3.2) become

2Ve™22 1
_ a
= +U?|m:v+ﬁ¢um ,
) —(B.1)
\/:mlﬁlw\/\mmluy+mkm;m».*.wﬁwu _a .
ﬂ 1
with '
. a=ay . (B.2)
Considering e=2* = Y, from (B.1) one gets
ﬂ.Aw\\ _ Mw.mm\ = 4q — Mﬁm Amwv
With the variable change r = ¢!, (B.3) becomes |
Y—9—2y=dae™? _ 2 E\c
where dot Qahzom the derivate with respect to the variable ¢ s
The solution of (B.4) has the form .
y=14ae %4 Cze ™t 4+ Cye* Qw@v
Cs, C4 = const (B-6)
For C3 = —r (the Schwarschild radius), a’Q? = a, the solution (B.5) becomes
—ax _ rG R\@m I
=1t -4 G (B.7)

ntg -

(4.2)
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Appendix C

Forpg=p§=-v, fg=wu, wu, vrealfunctions, u=%andy=e"2* the system
(4.1) has the solution \ \
y=ci+ 24 2 1)
L r?
QM. m“ m = const AQMV

Since in the case of which the space has no torsion, the equations (4.1) must have as
a solution the Schwarschild metric, we choose C] = 1, % = —rg. For C} one must
choose the value

Ci = —a* (C.3)

e =1-8_2 (C.4)

If one chooses C4 = a? the metric Reissner-Nordstrom is obtained, but in this case
the contorsion components are zero, consequently this metric is not compatible to the
torsion.
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