acta physica slovaca vol. 45 No. 5, 567 — 574 October 1995

CORRELATION DIMENSION UNDERESTIMATION

Anna Krakovska!
[nstitute of Measurement Science, Slovak Academy of Sciences, Dibravskd cesta 9,
842 19 Bratislava, Slovakia

Received 16 May 1994, in final form 5 December 1994, accepted 7 December 1994

The Grassberger-Procaccia algorithm for the calculation of correlation dimension
provides a value which underestimates the real correlation dimension, even for
precise and noiseless data. This fact is connected with the data set size used
for calculation. In this paper, relation between the amount of data points and
precision of the dimension estimate is derived. Numerical experiments with Lorenz
system are used to illustrate the results.

1. Introduction

This paper deals with correlation dimension of attractor and its estimation by the
Grassberger - Procaccia algorithm (GPA) [1], [2]. The GPA is a widely used way of
the identification of low-dimensional determinism. The result of this algorithm may
provide an indication of chaos and information about the lower bound on the number
of a suitable model’s degrees of freedom. We focus our attention on some problems with
the application of the GPA.

Let us consider dynamical systems described in terms of maps or differential equa-
tions. The dynamics of such systems is usually investigated in state space where the
evolution of the system from an initial state corresponds to a trajectory. If the trajecto-
ries approach some subset of the state space, then this set is called an attractor. First of
all, we are interested in nonlinear dynamical systems with chaotic behaviour. A typical
feature of chaotic systems is a sensitivity to initial conditions what causes that any
small uncertainty in the initial state estimation grows exponentially fast. Seemingly,
this divergence of initially nearby trajectories cannot occur in the case of dissipative
systems for which the volume of initial conditions contracts to some subsct of the state
space. In fact, the system with sensitive dependency on initial conditions can evolve to
an attractor, but the dynamics must exhibit stretching and folding. It means that in
some directions the trajectories of the system are stretched, whereas in other directions
they have to be contracted. It gives rise to chaotic attractors - sets of highly complicated
fractal structure {3}.
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Fig. 1. Correlation exponent curve for Lorenz attractor. M = 3, N = 40000. Typical
regions of correlation exponent curve can be distinguished: the plateau lies between the range
of statistical fluctuations for vanishing e and the range where ¢ exceeds the data set diameter.

Low-dimensional nonlinear systems which exhibit complex and apparently ::v_.m..
dictable behaviour resemble stochastic systems. In many cases of interest, &mabmimwwuw
between determinism and stochasticity represents a difficult problem. In order to pro-
vide such a distinction a lot of new techniques have been developed. One of them is
explained further.

id

2. Grassberger-Procaccia algorithm

The geometrical character of the attractor may provide an important information about

the system. To characterize the structure of the attractor the spectrum of generalized
dimensions Dy is widely used {1}, [4]:
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where N (¢) is the total number of hypercubes of dimension M and side length & which
cover the attractor, and p; is the probability of finding a point in the hypercube .

The three commonly investigated dimensions are Dy (capacity dimension), D (in®
formation dimension) and Dy (correlation dimension). To be exact, we note that D1
cannot be calculated by substituting ¢ = 1 to (1). D1 means limg1 Dy. i

We study the correlation dimension which can be calculated using the GPA. ,E:m
algorithm is easy to implement but we will show that the obtained result have to be

interpreted carefully. It is evident, that the correlation dimension of simple attractor _

take on integer values. For example, fixed point has dimension zero, limit cycle has
dimension one, 2-torus has dimension two. Fractal attractors, however, are of nonin-
teger correlation dimension. It means that estimating a finite noninteger correlation
dimension indicates the presence of complex deterministic dynamics. Therefore, this

Correlation dimension underestimation 569

ity may be used as a tool for distinguishing between stochasticity and determin-
;sm. Moreover, the value of the attractor dimension provides an information about the
mninimum number of degrees of freedom of the system which generates this attractor.

Next we recall the basic ideas which the GPA is based on [1]. From (1) one can see
that correlation dimension is given by

N{(e) ,
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where correlation integral Cy = S, p?is the probability that a hypercube of volume
Pl

¢M contains two points of the attractor. It is approximately equal to the probability
that the distance |X;, X;| between two points X;, X; of the attractor is less than e.
Therefore, correlation integral C5 can be approximated as

N N
. 1
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0 ,ifz<0
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N is the number of data used for calculation. Then the GPA simply counts the pairs of
points with mutual distance less than €.

From (2) one can see that, in order to find the correlation dimension, we have to
plot In Ca(e) as a function of Ine and follow the slope of the obtained curve. This slope
vie) = Ew%ﬁt is called correlation exponent, and the limit of v(g) for vanishing ¢
represents the correlation dimension. But the estimate of the lim,_,q v(€) is often not
easy.

In order to analyse the behaviour of correlation exponent v(g) it is usefull to plot
v(€) versus lne. As it is shown in Fig. 1, for finite sample size this plot displays more
regions of distinct types of behaviour. For small €, the graph depends on a statistically
unsufficient number of points, so for this part large differences in v(g) are typical. It
means, that in the case of finite number of data, it is impossible to determine the limit
behaviour of correlation exponent. If a flat part (plateau) follows, one assumes that
the limit value has been reached here already. Then the value of the plateau is taken
as the searched correlation dimension. Finally, the slope approaches zero for ¢ close to
the diameter of the sample set. It is obvious that due to the poor statistics at small €
and the edge effect at large €, only limited part of the graph is usable for the dimension
estimation.

Recently, many authors have discussed the number of data necessary for correla-
tion dimension calculation [2], [5], [6], [7). Surprisingly, they have not obtained the
same results. For instance, for reliable dimension estimation (5% error) of an attractor
L.A Smith requires 42™ data [5], and J.Theiler requires 5 data [2], where M is the
minimum dimension of space containing the whole attractor. The first requirement
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Fig. 2. Correlation exponent curve for uniformly distributed random data. M = 3, N is
infinite (pointed), N = 10000 (full).
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Fig. 3. Cut of correlation exponent curve for Lorenz attractor. Minimum embedding dimension
M = 3, number of data N = 125 (dashed), N = 1158 (pointed) and N = 74088 (full).

is regarded to be too pessimistic the second one is too optimistic. Differences in the
results have arisen because the argumentations of the authors contain one vague part
regarding the acceptable range of plateau.

In this paper, we show what is the number of data needed for succesful application of
the GPA and what is the possible underestimation of the resultant correlation dimension
estimate. The validity of our results is clearly supported by numerical experiments.

3. Results

Let us derive how many data are necessary for the computation of correlation di-
mension by the GPA. In contrast to other analyses, our estimate of number of data
necessary for succesful dimension calculation does not depend on expected width of the
plateau. We only utilize the knowledge of underestimation for uniform M-dimensional
hypercube. On that account, we consider calculation of correlation dimension for ran-
dom data, similarly, as it has been done by L.A.Smith [5]. Since random data are not
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v_.omaoom by a finite-dimensional system, we expect that in M-dimensional space the
GPA will result in the value M. It is true for infinite amount of points, but finite num-
per of data leads to the underestimated value of correlation dimenson, as the following
analysis shows.

Let us have a uniformly covered M-dimensional cube with edge length equal one.
Then Ca(e) corresponds to the probability that the distance between two randomly
chosen points is less than e. It is easy to show that for one-dimensional cube (interval)
this probability is

Plz—yl<e)=¢€(2-¢).

Next, the maximum norm is used, so that the distance |X,Y| between two points
X = (21, 2m), Y = (41,...,ym) is given by

IX,Y| = maz{|lzi - wl, i=1,..,M}.

Then in the case of uniformly covered M-dimensional cube the searched probability P
s
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Thus
Cale) = (e(2 - )™

and

. _d{(InCs(e) _ €
. tﬁmvlalsﬁulwlmv = va

From Eq. (3) it is obvious that for nonzero ¢ the computed v is less then the expected
M, therefore it underestimates the true value. This underestimation is presented in Fig.
2. But the relation (3) is derived for the case of infinite amount of uniformly distributed
points.

Let us assume a finite number of uniformly distributed points in hypercubes of in-
creasing dimension M. The GPA is based on calculating the mutual distance of points.
In the case of finite number of data, the most probable distance £,qy is of great impor-
tance. Because of poor statistics, for € < €maz the correlation exponent v(e) presents
sudden changes so this part of graph does not give usable information. If the number of
uniformly distributed data points in the M-dimensional cube is N then emazr = N—w.
Therefore,

V(emaz) = M AH - .%.mﬂv (4)

yields the maximum value, which is acceptable for N random data embedded in a M-
dimensional cube. This statement is supported by numerical experiment (Fig. 2).

The relation (4) helps us to answer two practical questions.
1. How many data are necessary for the GPA if investigating uniformly distributed
random points?
9. What is the measure of correlation dimension underestimation if the number of
points used for the GPA is N and the dimension of space is M7
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To answer the first question, let us assume that we want to calculate the dimension
with precision k. Then V(Emaz) = ME, what results in the requirement N = Amvg
If k = 95% than N = (10.5). It means that obtaining an 5% underestimated resul
by the GPA demands using (10.5)M data. Of course, this is valid for uniformly covered
M-dimensional hypercube.

The concrete example of the second problem may be the following one. For N =
100000 uniformly distributed points in cube of dimension M = 5 the estimated corre-

lation exponent will be 1 — L Wi 94.7% of the expected value five, i.e. 4.73."
2.1000005 —1

We note that the above analysis is valid for uniformly distributed points which repre-
sents the case of maximum value of underestimation. Now we can focus on deterministic
systems. Their attractors are more » compressed”, than a set of uniformly distributed
points. Therefore in most cases using the same amount of data should result in higher
precision in dimension estimation. Assume that the investigated attractor is embedded
in M-dimensional space, where M is as small as possible. It means that M = int(Ds)+1.
Here int(D,) denotes the integer part of the attractor’s dimension. In the further text
this value of M will be reffered to as the minimum embedding dimension. The value of
correlation exponent for the most probable distance €m,40 ON the attractor we denote
vp. In practice, vp is obtained as the value of the plateau. Then an analogy of (4) holds
for deterministic systems: :

1
_\wnbmﬂwnwzml _v ’

where v, is the value of the plateau, D; is the searched dimension, N is the number of
data points, M is the minimum embedding dimension. The measure of underestimation
is given by the expression in brackets. To approximate this measure we replace Dy by
M. It leads to the estimate j

i
D, (1-
v > MA wzwlv

Then

1
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where v, is the value of the plateau, D3 is the searched dimension, N is the number of
data points, M is the minimum embedding dimension.

Because of the above argumentation we suggest to determine the correlation dimen-
sion in case of deterministic systems as follows. First a clear plateau in correlation
exponent function is required. If the plateau exists, its value yields the lower bound of
the interval the investigated dimension lies in. The upper bound is given by (5)-

To summarize, the next relation holds for the correlation dimension Dj:

poc (o (145 )) 0
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where vp is the value of the plateau, N is the number of data points, and M is the
minimum embedding dimension.

In order to illustrate our results, some numerical experiments are presented in the
following section.

4. Examples

1. First example is the uniformly covered hypercube. We will show that the analytically
derived results are confirmed by numerical computations. Fig. 2 presents correlation
exponent function for uniformly distributed data. The pointed line denotes the hy-
potetical curve of v(g) for infinite amount of points as it is given by Eq. (3). The
example of finite amount of data points is drawn fully. In this case, the state space
dimension coincides with the minimum embedding dimension so that M = 3. Number
of data N = 10000. Eq. (4) says that €maz & 0.046 (In 0.046 ~ —3.08) represents the
most probable distance therefore v(0.046) &~ 2.929 is the maximum acceptable value of
correlation exponent. The amount of pairs of points with mutual distance £ less than
Emaz & 0.046 is decreasing and it leads to irregular changes in v(e). Fig. 2 clearly
illustrates this effect. For Ine > —3.08 both curves coinside, for Ine below —3.08 the
full curve presents sudden changes so it is not more usable.

As random data are not generated by a finite-dimensional system, v should theo-
retically equal 3. But using a finite number of data leads to underestimation and the
curve of correlation exponent looks like indicating a deterministic dynamics. Now it 1s
clear that a number of computed values of ”low dimensions” in the literature has been
a reflection of a small number of data rather than of a low-dimensional dynamics.

9. The second example concerns the Lorenz system,

¢ = 10(y-—=2)
g = —y—xz+28z
: = zy—(8/3)z

Correlation dimension of Lorenz attractor lies between 2.06 and 2.08. 95% of this value
is between 1.957 and 1.976. In order to reach this value, 5% = 125 data is recommended
to use in paper [2]. The corresponding correlation exponent curve (dashed) in Fig.
3 shows that this amount of data is statistically unsufficient. On the other hand,
493 — 74088 data, required in [5] leads to much better result than 95% of the true
value of correlation dimension (full line). We have recommended using 10.5° = 1158
data points and the calculation confirmes that this amount of data really leads to the
plateau about 1.96.

5. Conclusion

The meaningful dimension estimation is conditioned by the existence of a clear plateau.
But the determination of the correlation exponent plateau is often a difficult problem.
Besides the influence of the amount of data, there are other aspects as the lacunarity of
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the attractor or the additive noise in data which can destroy the linear scaling range,
The effect of low-amplitude noise is often not significant but if the signal to noige
ratio is below some critical value, minimizing the effect of noise becomes important,
This question has been succesfully addressed by many authors and several nonlineay
filtering methods have been employed to reduce the noise in complex nonlinear time
series [9], [10], [11]. With reference to the above arguments, specifying the amount of
data sufficient for creation of a clear plateau and, consequently, acceptable dimension
estimation is not possible unless the quality of data is guarranteed.

It is clear that Grassberger-Procaccia method may be succesful only if having suf-
ficiently large data set. Our main result says that this amount is about (10.5)™ for
random points, uniformly distributed over the M-dimensional cube. According to our
experience (10.5)M data points of an attractor are also satisfactory for obtaining an
evident plateau in the case of deterministic systems’s attractor which is embedded in
M-dimensional space. The points of the attractor are nonuniformly distributed so the
underestimation will be lower than in the extreme case represented by the uniform hy-
percube. It results in the estimate (6). This relation allows very precise estimate of
correlation dimension, what brings us closer to the exact values of correlation dimension
for known chaotic attractors.
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