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In the present paper we have examined some aspects of the pseudoharmonical
oscillators quantum gas. After the deduction of the density matrix expression
and the partition function, we calculated some characteristics of this gas: thermal
moments of coordinate, internal energy, free energy, entropy and heat capacity.
We verified the obtained results by passing to the harmonic limit.

1. Introduction

Usually, the research of the vibrational motion of diatomic molecules is performed
by the model of three-dimensional quantum oscillator (HO-3). The advantages of this
model are well-known, originating, above all, in the fact that the harmonic potential
admits an exactly analytical solution of the Schrodinger’s equation.

Recently, there has reappeared an interest for another potential, namely the poten-
tial of the pseudoharmonical oscillator (PHO) [1):
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when rg is the equilibrium distance between the nuclei. This potential admits, also,
the exactly analytical solution of Schrodinger equation, being, in a certain sense, an
intermediate potential between the harmonic potential (an ideal potential) and the
anharmonic potentials (such as the Morse potential, the more realistic potential). A
comparative analysis of potentials HO-3 and PHO is made in ref. [2].

Let us consider the system of identical pseudoharmonical oscillators (the quantum
gas), without interactions, which are in thermodynamical equilibrium. Starting from
the statistical operator, or the density matrix, we shall calculate the most important
Quantities for the pseudoharmonical quantum gas.

We shall check up the obtained expressions in two ways: by passing to the harmonic
limit and, if it possible, by using the Hellmann-Feynman theorem.
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2. Formulation of the problem in the density matrix approach

A quantum gas of oscillators, in thermodynamical equilibrium with the reservoir
(thermostat) at temperature T, obeys the quantum canonical distribution. This is
characterized by the statistical operator or the density operator p which satisfies the
Bloch equation [3]. A representation of the density operator is called the density ma-
trix. In the coordinate representation, the density matrix p(r,r’; B) satisfies the Bloch
equation:
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with the limiting condition:
lim p(r,v'; ) = d(x — ) )

The density matrix may be defined as follows:

P(r, X 8) = 3 exp(—PEy 1) Wy saa (1) E 500 (r') )
vJM

Here W, p(r) is the eigenfunction of the hamiltonian H (r), corresponding to the
eigenvalue F, ;.

The density matrix is a very important concept, because its trace is just the partition
function of the system:

2(6) = \ ple,1'; B)dr (%)

which contains all the statistical-thermodynamical information about the system.
For a central-type potential, like PHO, the eigenfunctions emwv » () can be factorized

into the radial part mww?.v and the angular one Y;4(©, ¢), so that the density matrix
(4) can be written in the form:

\ u, \
PP (rr'p) = 2@+ 1)Ps(eos el (r,1';6), ©)

where v is the angle between the vectors r and r’, the index (p) reffers to the charac-
teristical quantities of PHO. ¢
The radial density matrix will be:

PP (r, ' 8) =Y exp Aimm.@v RE)(r)RE)" () (M

The functions mﬂmﬁv?v have been calculated in [1]:
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Here I'(z) is Euler’s gamma function, L2(z) - Laguerre’s polynomial and

1

2
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The eigenvalue of energy is:

1 hw mw?
2 2 4

E®) = hw Ae+ =)+ —=as- 5 (10)

Evidently, for the central field potential, like PHO, the Bloch equation (2) can be
reduced as follows:
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Using the substitution
9P (r, 75 B) = o' 6P (r, 73 ), (12)
it is easy to obtain the Bloch equation in the form:
d o | RO ®) B JJ+D) oy,
~ 3% (r,v';8) = “omaz TV ?v+w§lﬂi g5 (s B),  (13)

which, in absence of rotation (J = 0), is formally identical with the Bloch equation of

the one-dimensional motion.
In a previous paper (ref. [4]) we have deduced the expression of the density matrix

(6) by calculating the radial density matrix with eq. (7) and using the Hille-Hardy
relation [5]:
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where [, is the modified Bessel function.
The radial density matrix becomes:
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and the total density matrix (4) will be [4]:
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The reduced radial density matrix (12) can be obtained also directly,
Bloch equation (13) by standard methods for the Green function, path i
by hybrid methods (shape invariant potentials and a time transformati
7).

Generally, for J # 0, the use of eq. (16) generates some mathematical difficulties
and this is the reason why a simplification of this equation is necessary, if it is possible,

A function can be developed into a series of Lagrange polynomials as follows:

by solving the
ntegrals (6] op
on of variables

i

f(a,t) = (27 + 1)Ps() f5(2) a7)
J=0
110 =5 [ re.0ps(e)a (13)

By comparing these expressions and the sum of eq. (16),

we use the following
integral representation for the modified Bessel function I, ,(t) [8]

bSmSSn ,\m%wlc \_% (1-2%)" 5 g4y (19)
0/

It is easy to obtain the result:
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We may use the development:

”—y o0 .
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By multiplicating eq. (20) by A7, where | A |< 1is a dimensionless parameter
(naming it m::m::o:mn:%v and after summation, we obtain:

flz,t) = 2 ma__AHIm\/a+>vaW>u$QlamZ5 o)

vr 1—22
where the following notations have been used:

mw '
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T = cos7y; t=

In conclusion, the total density matrix (16) becomes:
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It is useful to observe here, that at the harmonical _WSF defined as:
lim A®) = limA® = A
HO
ro — 0 . Awmv
ay=J+ 3
w = 2wg
A—=0 .
and taking into consideration the expression [5}:
1 00
o= 7087 _ AHV *N7(2J + 1) Py(cos Ny 1(2) (26)
2z
J=0

the density matrix (16) for PHO passes into the density matrix p(%(r, r’; B) for isotropic
HO-3:
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Taking into consideration this fact, the eq. (24) can be written in a simplified

manner: 1

(1 —2Xcosy + A?)shple | *

PP (x,x's B) = PO (r,x'; ) err! sin? y
) I mw 7' sin? y * (28)
s Y T YT
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Due to eq. (9) for the o parameter, eq. (28) nm.::_oe ?wnrom by mma.v:mo.&.v M:
this stage, the formulation of the problem in the density matrix approach is finished,
EE?L.J ) being the central concept of the theory.

3. Calculation of the thermal moments and thermodynamical functions

Generally, the expected value for a certain physical observable A®) which charac-
terizes the pseudoharmonical oscillator gas is:

H :\S:gni% (29)
?avng\\_f o P (x,x'; B) |
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where the successio
- n of operati ; .
function o(®) . P tons i1s the following: fi
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equilibrium position: r moment is the expected value of the displacement f;

’ 1t from the
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The integral from
. the denominator is j -
(3). The integral is of the following E:Mmﬁﬂﬂma the statistical sum (partition function)
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r the integration, the following notation is used:
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where the new variable is:
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Th .. .
e partition function corresponds to the value n=0-:
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The n-order moment will be:
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For n=-2, the expected value will be:

(®) gl—4)
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AUV =35 2% s #9)
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aluating the contribution of the centrifugal term. The

This expression is useful in ev.
n=1and n=2 - orders moments will be:
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hermodynamical functions it is useful to write the parti-

For the calculation of the t
tion function which corresponds fo an oscillator as follows:

u mE
2(p) = 700 X (57573 i = Ev

f the anharmonicity.

This makes evident the contribution o
For the system of the N oscillators (quantum gas), the partition function is (when
the interactions are absent):
(43)
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ple of statistical mechanics, it 1s
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partition

Accor
all the thermodynamical prope

determine
function is known [10].
The free energy of the gas is:
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The internal energy is:
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where, using the fact that
lij hw hw 8 (46)




564
U. muovo.\

after the elementary operations, eq. (45) can be written as:

2
UP) = o) _ NIZmlo.\. ‘h hw m Ié) )
g 0T Ntk 1= limu gt inS)

(47)
The entropy of the gas $®) can be easily calculated by using the previous results

s — kBUu® — F@)y,

(48)
and so we obtain
s — .wﬁov+\u\< In 2(1 - A) + lim1 .WMMWV EN hw hw 4
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¥, we will also calculate the molar heat capacity at the constant volume:
1dyie) R .oU®
cP_ 2 =_—_-32
¥ v dT Zm a8 (50)
By using eqs. (47) and (46), we obtain its expression:
2
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In the final eqs. A.Amvu TKY. (47), (49) and (51) we have separated, (denoted by index
(0)), the oon.no.mﬁoszm .a:mssawm of the three-dimensional isotropic HO.
The explicit expressions of these quantities will be given in the next chapter.

4. Verification of the obtained results

.mw:nm the Uwov_ma of the harmonic oscillator is a completely solvable problem, to
N\MMW@ the obtained results, we address ourselves to the harmonic limit defined by eq.
We use the relations [12]:

3 ™
r{s+3) = Fam i (52)
@I, "
WM. U2 © Ty fEp (53)
~[(J+v i .
,Muuno Ag.L_w viumwlmav’vi lz]<1. (54)
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In eq. (28), the infinite sum represents an exponential which has the harmonic limit

equal to 1, so that
lim p®(x, x'; ) = p* (x, ', B), (55)

i.e. just eq. (27).
In order to find the limit of the partition function, but also for other expressions, it

is useful to write the particular value of the sum _m.M“.w:“
(n+1) =T n+3 u .
Sid) A 2 Clyivﬁm (56)
Thus eq. (42) becomes:
1
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We write also expressions of the other thermodynamical functions (internal energy,
free energy, entropy and molar heat capacity, respectively):

hw 1
i (r) = p(0) hhand _ p—Bhwo
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The harmonic limit of the n-order moment is obtained from eq. (38), taking into
account eq. (52} + (54):

i z n+3

with the evident particularizations for n=-2; 1; 2.
The verification of the results for the moments can also be made if we calculate
again the moments in rotation - vibration states | vJ > and the statistical average:

_3 8..
") = a1y L@ D L (@3)

The expected values for n=2 and -2 can be calculated by using the Hellmann-

Feynman theorem [10]: .
OH vﬁ _ 9EY) (64)
%Qm vl %D_.
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where a; are the parameters involved in the hamiltonian H. From eqs. (1) and (10), for
a; = rg, we obtain:

1\® mw 1 |
Aiv ;T ey (65)
and for q; = w:
2\p) _ 4, R w ||m
)7 = %5& Ae+ wv +w§€o€ 38

By substituting these values into eq. (63), we obtain eq. (39), respectively eq. (41),
which have the limit given by the eq. (62).

5. Conclusions

The main reason why the study of the pseudoharmonical oscillators quantum gas is
interesting is because this type of anharmonic potential permits an exactly analytical
solution of the Schrédinger’s equation, or the Bloch equation.

It is necessary to use an anharmonic potential for real diatomic molecules. In the
present paper this is the PHO, because: it is asymmetric with respect to To; it is a
more physically realistic potential in comparison with the HO; it becomes infinite in
the origin of the coordinate r; it is extended only in the physical region (0 < r < 00);
1t admits an exact solution of the Schrédinger equation.

We have obtained a series of expressions for the coordinate moments and for some
thermodynamical functions which characterize the pseudoharmonical oscillators quan-
tum gas. At the harmonic limit, all these expressions go over into the corresponding
expressions for HO,
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