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On the basis of the exact solution of the quantum Liouville equation, the relation
for the average matrix elements of the statistical operator is derived. Further it
1s shown that the average diagonal elements of the statistical operator obey the
generalized Fokker-Planck equation for an arbitrary probability distribution of a
collision force fc(t).

1. Introduction

In the last ten years there has been renewed interest in the problem of describing
damping of quantum system. The most common approaches to the quantum mechanical
description of dissipation are based on quantum mechanical Langevin equations [1] {2]
(3] or associated quantum master equation [4].

In this paper we focus our attention on a problem of the quantum Brownian motion
described by the quantum Langevin equation. The thorough exposé on the history of
the problem of the quantum Brownian moton is given in [5]. The Langevin equation was
sucessfully used to describe the processes in quantum noise, in quantum optics and in
spin relaxation theory. It can be derived from the model which consists of particle with
few degrees of freedom and a ”heat bath” with many degrees of freedom. Usually the
heat bath consists of a set of harmonic oscillators coupled lineary to the co-ordinates r
of the Brownian particle moving in a potential U(r, ) [1] [2] and [6] [7] [8].

The system under study is then governed by the Hamiltonian
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H= 3= 4UEt)+ Y {2 + -muwl(x, ~ )%}, (1)
n=1
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where p,r are generalized co-ordinates and momentums of the Brownian particle and
{Pn, x,} are generalized co-cordinates and momentums of harmonic oscillators.

The model of Hamiltonian is quite good in quantum noise theory, in quantum optics
or in solid state theory since the relevant heat bath is the electromagnetic field or
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vibration of atoms, w
Until now this model of H,

the problem of quantum Brownian motion of particle wil] be solved,
Quantum Langevip equation.

Proceeding analogously ag ip [9]
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where m.a?a??& ==VU(r(t),t), mr? = MMQ Slnw.etw
From the equations (4) and (5) follows the equation
’%,(t) . Cn .
qE T ~Wakn(t) + ﬂl&. (6)
The solution of equation (6) is the following
- t . ,
Xn(t) = Emm: Wnl + X, (0)cos w,t + n’:\ Em?v&ﬁ (7)
My W, my, Jo Wp
From equations (2) and (3) follows the equation
) 1, o TR
uﬂMv = m &AHA&vu Nv - H.NHQV + I3M M OaunzANV. Amv
n=1

Introducing relation (7) into equation (8)

g” 'lwl,\o, .\.AN lﬂv&m.ﬁq.v

we obtain the equation
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where
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f.(1) = MU ASD. Pn(0)sin wyt + ¢, %, (0)cos w,t}, (10)
=1 nln
n=N 2
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lants in a special case when the initial density operator of the heat bath is g
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by the relation L
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The first and second cumulants are expressed by the relations:

f.(1)p 14
< fe(t) >e= Spf.(t)p(t = 0) = 0, (14)
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Erﬂmio Moe h .W 0, then according to relation (12) f.(t) commutes with f.(t'), and using

the limit . r hun  2kgT
Ak coth s =
in (15) we obtain
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I the assembly of harmonic oscillators have the following special properties:
1 some cases
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smooth functions of oscillator frequences. n are the

If the above-mentioned conditions are fulfilled then we can write
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where g(w) wm a spectral density of oscillators, ¢,, = 2mv/ D,
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nto relation (15) we obtain

<LOf.t)> = 9m’D \ " gw) L) fu
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In the further text we will consider the situation when
2
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g(w =
( VSAEVEM mkpT’
In this case relation (11) can be written in the form
4m?pD [ 2m?
0= _2m*D
f(t) T J, cos wtdw = T 4(1), (18)

where §(¢) mm a Dirac delta function.
Introducing relation (18) into equation (9) we obtain the following equation
d*i(t) dr(t) 1.
=P Li ), (19)

m

where wAm.QY ) = WAT,.QY t) +m.a~$ and 8 = MS%.

2. Solution of the quantum Liouville equation
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It is possible to show [11] that the Langrangian function is expressed by the relation

L= QEW% —U(r, 1) + v £.(8)]. (21)

On the basis of relation (23), the Hamiltonian function can be written in the form

2
H=pv—L=eP Dt U1 - r i), (22)
where p = Vv L = e®*mv is the generalized momentum.
From relation (22) immediately follows the Hamiltonian, which has the form

-t B2 Bt
H = = oD+ P (U(r, 1) - r (1)), (23)

It can be shown that using the Hamiltonian (23) the Heisenberg equation is the same
as equation (19).

In the general case, the external force f; may depend on r and ¢. In this paper we
shall consider that the external force will be a function only of the time variable.

Further, we will use some approximation which will lie in the following fact. The
Brownian particle will be treated quantum-mechanically but the random force m.nQv will
be treated classicaly (A — 0). In the framework of this approximation instead of operator
f.(t) we will use the classical quantity f.(t). For improving this approximation we will
substitute the classical cumulants in the obtained results by the quantum cumulants.
Because the force fe(2) is a random vector we must, at first, define the force fe(¢) by the
probability distribution and then give the statistical description of the dynamics of the
particle. Usually it is assumed that the probability distribution of the f¢{t) is Gaussian.
In this paper we shall consider in the certain cases that the probability distribution is
also Gaussian with the first two statistical moments expressed by relations (14) and
(17).

As the rule, the 4- correlation function is considered more often. This type of the
correlation function can be obtained by introducing relation (18) into relation (16).

The generalized Fokker-Planck equation will be derived in the case of the arbitrary
probability distribution of the fe(t).

The statistical description of the Brownian motion will be done through the average
matrix element of the statistical operator j(t). The average matrix element of the p(t)
is defined by the following relation:

<< rolp(t)|re >>% \ < rlp(t)fra > WIEL, (7)]Hdf.(7), (24)
t<r<to

where W(f! ] is the functional probability distribution of the collision force f.(t) over

Cig
the time interval (2,t0).
In the subsequent sections we shall evaluate exactly the average matrix elements of
the 5(¢). Then we shall derive the generalized Fokker-Planck equation for the average

diagonal matrix element of the 5(t).
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The statistical operator 5(t) obeys the quantum Liouville equation:

w220 _ 14 s (25)

The solution of equation (25) can be written in the form

P = T(t, 0)p(e = 0T (1), (2)

where %Q- tg) is the time-evolution operator, which obeys the equation

%Nﬁ?f ucv . .\WNJQ‘ ncv. AM.NV

=

mp:} to) is the Hermitian adjoint operator of the T, tg).
On the basis of relation (26), matrix element of the p(t) is expressed through the
Feynman’s path integrals [12] in the following way:

Il

<rslp(t)|rg > \ \ dydz < x| T(t,0)ly >< y|a(t = 0)lz >< 2[TH(¢, 0)fry >=

= \.\&%&n@??ﬁ?ov <ylp(t = 0)|z > G*(rq,t;2,0), Awmv
where
Ts .t 4 a2 - -
Glrntiy,0)= [ et st o ) (29)
Yy
and ;
Ta i t rrmp2 .
Flativ.0)= [7 ROt sy ) (30)
7 £5

The evaluation of integrals (29) and (30) is performed in the following way: In the path

integral (29) we choose the transformation
r(r) = v(r) + u(r) (31)
where u(r) is given by the solution of the equation

f(r)

i(r) = ~pa(r) + ©7) (32)

for the initial conditions
u(0) = u(0) = 0. (33)
The solution of equation (32) by considering (33) is expressed by the relation «

¢ 1
u(t) H.\ e=hn \ P f(r) dridry. (34)
0 0

m
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; 35
nm..mb a?m?vﬂ?v&muo?o —u(t),t;y,0) (35)
e b Lo )
Qoﬁn.rmwu.mvov = \Hn €
is the propagator which obeys the equation
2
] Ilnll%ﬁuo?.?ﬁﬂ?ov = |®|E~«~|>~.~QQT.T?H§OV. (36)
oh ot N 2m
The solution of equation (36) must satisfy the initial condition
Go(r1,0;12,0) = 8(r; —ra).
Introducing the modified time ¢* by the relation
e (37)
A
we transform equation (36) into the form:
2
: @Qcﬁﬂuum*wﬂwgcv — 13\|D~.~QOA~.TN*WHNQOV. Awmv
ih at* 2m
The solution of equation (38) is well-known and is expressed by the relation
0
) Tl (39)
QQAHT u.._w ra, Ov = A%v (4

wv_ cons A_O @—N 1 S 1 @ re mV m Tim.
tion: “wmv a Q Aw v —W.O—OHM AM :@m A_—G :v__cs:_ *:
TSl H~=m I A y |
m vwmnllu:— |-|||.e ) (t)

< rplp(t)ira > = \\%& <ylpt =0)|z > (77w
L%Eﬁmm%.sic.?olﬁ_. (40)

e

t Tw we TW.(@ to
or ﬂ—ﬂ@ tat ﬂmﬂ@.— QOmOﬂwﬁﬁ—o—‘w Om &TO Q<=mawﬁm Om. Hrw mﬂoss—ws par 1C:
statis

p i decompose the
calculate the average matrix element of the p(t). For this purpouse we
alculate
! | . 41
quantity u(t) into parts: ——— (1)

where (42)

d(t) = N_m\o [1 - e P DNfy(r)dr
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and
17t o
e(t) = w;lm\o 1- m|ETlﬁ.aT.Eﬁ (43)

After substituting relation (41) into relation (40), the average matrix element of ¢,
e

A(t) is expressed by the relation

<< mlp(t)frg >> = \ \

dydz < ylp(t = 0)fz > (5213 x (49)

~dey2-@,-z_dy)y :
a-2-dy)?
y %TE&S?TE x

+igefté(t) fr,-1,) S

MM: Wrovméwwmgm of the last term on the right-hand side of relation (44) we shall us
¢ Kubo formula [13]. If the collision force fe(t) is defined by the continual chmmmmm

distribution with the first two isti
statistical :
h8i we can it al moments expressed by relations (14) and (17)

—ym @Tp-Ta+Z— s
<e ..wmﬁv,lr_.llﬁtwms.?,l?v

= (45)
= +e 4(1)(Ts-T0a)%)
where
¢ 1—e=8n ¢ 1 — =P
1) = €
¥(t) \o 8 \o 3 W(l|r ~ |)dridry Emv
t 1 —e8n t
t) = —f7,
() \o 3 \o W (In = 7a)drydry (47)
t t
— —fr — BT .
40 f\o € \o e W (Iry ~ m)drydr. (48)

3. Analysis of the nondiagonal average matrix element of the A1)
MM%_?m mmo_ww,oz we shall show a.rmn the nondiagonal average matrix elements of the mS
" vﬁéa« ast. mﬁ.: proving this fact we arrange relations (46)-(48) integration by parts
and after integration we obtain the following relations:

2 t
Y(t) = Ww\oﬁllg?v&ﬂl

fvi

2 [t ) t o

— Ww.\c W(r)dr + Ww&é\o:I?i%:uﬁ::\i% ,,@e

s

plt) = %\o:IQIETJ+m-§+?fm-§:\3% (50)
2 . [

o) = 3¢ u\ogm:fﬂvs\?zﬁ (51)
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[n asymptotic form (8t > 1) relations (49)-(51) pass into the forms

Y(t) = a = %I»\oQIJS\?.Kﬂ (52)

o) 5 b = % \o W (r)dr (53)
= L amma T)dT

$(t) > = m\o W (r)dr. (54)

For the d-correlation function (W(r) = 4(r)) relations (52)-(54) have the following
forms

P(t) — %ﬁ (55)
o) > 537 (56)
40 - 35 (57)

If we put relations (52)-(54) into relation (45) we shall see that the nondiagonal average
matrix element is damped faster than the diagonal average matrix element of the j(t)
due to the existence of the terms et and e?#* on the right-hand side of relation (45).

4. Generalized quantum Fokker-Planck equation

At first we derive the generalized quantum Fokker-Planck equation without assumption
about the distribution function of the random force f.(t). Then the obtained equation
will be considered in the case when the distribution function of the f,(t) is Gaussian
with the first two moments expressed by relations (14) and (17) or in the case of the
d-correlation function.

According to relation (40), the diagonal element of the j(t) is expressed by the
relation

< rplp(t)|re >= e €0 Vr, ~d@).vr,

m (Ly-

3 il i
[ [ avds <3iote = 0)la > (5% 5

Introducing the notation
P(ry, t) =<< 1p|p(t)ry >>

1t can be shown that the average probability distribution P(ry,t) obeys the following
differential equation

%;UT.? Nv
ot

s OP(xe,1)

= = <é(1).Vr, < rplp(t) ey >> —d(t).Vr, P(rs, t) + o (59)
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Further on we shall assume that

<L) >=0.

Then using the Kubo formula (13] we can write

. - d d ~[ae(t!
- < m.@v.q:m va.Qu.o >= &'ﬁ.@ <e [ae( v+m?:.<~.o > _QHo“Ht =
Q & . —1\n 1 & t ; ne—1

= T a2 ("D diyr eV, <e(t)e() Vr,l vo_QHonﬂt x

<e ®Or o R eme®r, (60)
where <>. means the cumulant average.
N;w = MOUAI.HVI 1 QH < OA&vmmﬁvqu. H_:|~ Do AQ.._,V
= (n—1)1 7" ¢

After introducing relation (60) into equation (59) we obtain the generalized Fokker-
Planck equation:

L) (400,90, Plen ) 4 o

OP(r, t)
ot

Equation (62) is valid for the arbitrary distribution function of the random force f.(2).

When the distribution function is Gaussian with the first two moments expressed by
relations (14) and (17) then

(62)

“ R = wbﬁﬁvbﬂe . Amwv
and for d-correlation function according to relation (56)
. D v

for (Bt > 1).
In the last case equation (62) is the standard Fokker-Planck equation because £* —

W=

5. Conclusion

In this paper we have obtained the following results: i

The average matrix element of the statistical operator p(¢) has been calculated in
the case of the Gaussian distribution function of the random force f,(¢).

than the diagonal average element of the fj(t).

We have derived the generalized Fokker-Planck equation valid for the arbitrary
distribution function of the random force f.(1).
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