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We calculated numerically Shannon’s entropies for position of certain quantum

states of hydrogen atom and found a phenomenological function for their depen-
dence on the radial quantum number n. Using this function we determined the
energy-entropy relation for hydrogen atom and discussed its significance in the
interaction of hydrogen atom with photons.

1. Introduction

The determination of the informational parameters of quantum objects has been an im-
portant topic in the recent literature of physics, quantum chaos and computers (see e.g.
the biography in refs. [1], [2] and [3]). The equivalence of information and negentropy
as well as the existence of a linkage between the thermodynamic and information-
theoretical entropy threw a new light on the activity of Maxwell’s demon [3] and led
to formulation of statistical mechanics in terms of information theory [4]. It has been
shown already in sixties that the probabilistic interpretation of quantum mechanics
forms an appropriate fundament for the application of information theory in quantum
mechanics [10]. Due to relation between the physical and information-theoretical en-
tropies via Boltzmann’s constant kg we can ascribe to any quantum object a certain
value of its physical entropy Sphys = kgSinys [4]. This makes it possible to consider a
quantum object as a thermodynamical system characterized by its energy and entropy
and determine the entropy balance also for the interaction of microobjects. If this in-
teraction represents an irreversible process then the entropy balance should be positive
otherwise it should be zero. However, the Shannon entropy of a quantum object de-
Pends on its state and the chosen observables (position, momentum, etc.) which have
often continuous probability distributions and are linked by the quantum mechanical
laws. Moreover, the calculation of the Shannon entropies is complicated also by the
fact that the integrals representing the Shannon entropy of quantum states cannot be
generally evaluated by analytical methods but only numerically. Therefore, it is difficult
to find analytically the dependence of Shannon entropies on certain quantum numbers
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and one has to find it by some approximative phenomenological formulas. Since 1
o.w_o:._m:o: of the complete Shannon entropy for all observables of a real quanty ; mro .
chanical object would be a huge work we confine ourselves here only to the ca) iy
of the Shannon entropies for the position of a quantum object.

In Er.ma follows we calculate numerically the Shannon entropy for localizatiq .
m_mnn—g in real quantum object-the hydrogen atom. We then discuss the wamcxmﬁmo.ﬁ
the emission and absorption of photon by hydrogen atom, a problem which _uoom.o...a;
recently very actual due to new development of quantum optics especially €ro=~mo
became possible to study experimentally a single atom in a cavity interacting é:“
only one radiation mode (for a recent review see, e.g. [7]). Since the hydrogen atom-
represents m.BmQ.Omnovmo quantum system which can serve as a component of 85@5“
one can, having its information-theoretical characteristics, determine also a fundament _‘
physical limit of computation [9]. B

Before calculating the information-theoretical entropies of quantum states let us re-
call the exact definition of information-theoretical entropy as a measure of the
E_utwg:min uncertainty of a stochastic object. This definition is the following [5):
Let z .Um random variable defined on a stochastic object which takes the different <w_=8.
Zi, t=1,2,..  n, with the probabilities P, i=12...n ie Plz;) = B
Hm.ﬁ .mu = {P, Py, . B}, TP =1, P, >0, i=1,2,....n, be the finite Eom..
ability distribution. The (information-theoretical or Shannon) entropy of any discrete
probability distribution is given by the formula [1]

Oﬁ~N90ﬂ :

provided arm.; the xmolmm on the right-side-hand converges. The entropy of the continuous
nm:aoﬂ .a\w:mzm. z, the probability distribution of which is given by a function of the
probability density p(z) has the form [10]

where H() is the so-called differential entropy

HY = I\Ri_omiav% (10)
and H®) represents the diverging term

H® = |j :

lim logAz . (1c)

We note that except Shannon’s entropy (1) there exists a set of non-standard entropy
&om:;_o:m Serving as certain measures of probability uncertainty of stochastic object
which are sometimes used also in physics [5]. :
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2. Position entropies of quantum states

The simplest quantal system of two bodies with the Coulomb interaction represents the
hydrogen atom. If I/ is the energy of the electron-proton system then the wave function
(r, ©, p) of electron is a solution of the Schrodinger equation [6]
h? el
~||> - |M »\\Aﬂ.u®u€v = m,@?\.u@vﬁv . ADV

2m r

Carrying out the separation of angular and radial variables the eigensolutions of (a) for
eigenenergies Ey, are
%:_?yﬁﬁﬁwvﬁv = X:.L\\Aﬁmvuﬁv 3

where X, are radial functions and Y are the spherical harmonics. n,! and ) is radial
(principal), azimuthal and magnetic quantum number, respectively. The probability of
finding electron within the volume element, dr, is dP = ¢*dr and the correspond-

ing probability density .
NU *
Nv?:.@,ﬁv - Mﬂ — .K:\\

Inserting p(r,0,¢) in (1b) we get
.m:k_v, = l\ _ ﬂ\\:}\/ _u _Om _ %:_ﬁ\/ *w dr va

Since integrals (2) are generally very difficult to evaluate analytically (because of the
logarithm in their integrands) we calculated them numerically. To do this for all n,{, A
would be very lengthy work, therefore, we selected only some specific and interesting
wave functions with n =1,2,...,10 and [ =0, A=0. Putting z = r/(na) {a =
0.52 x 107'°m - atom radius), the radial function can be written in the form [8]

Xni = Npe “Py (z) | (3)
where .
1/1\2

Npy = - Am.m (4)

is the norm and P, ;(z) is the polynomial function
Pri(z) =ag+ a1z + asz® + .. .+ a,z” !

The coefficients ag,a1...a10 are given in Table 1. Inserting the normed radial
functions (I = 0,A = 0) in (2) we obtain

HW = 1\8 Nie~% Aw?c?:w_om T,\mmés :u:,c?:J 23z . (5)
0

Taking into account that

\ N2e=% (P, o(z))* log N?z?dz = log N2
4]
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Table 1.
m 0] 1 ) 3 P 5
Z § 7 8 5
T |1 I
2 11 [ -1 7500 ]
3 |1 -2 [ 973 Lz
T :
4 (1] 3] 32 173 % -
5 |14 4 “4/3 [ 3715 J.m#
w 1 [ -5 [20/31 1073 | 273 | -3/45 H.w/wmo
T T[6] 16 [ 20/3] 6 ~a7s 1775 Mc/qmw
: 1]-7 14 -35/3 14 -1475 4/3 -177 uwmmo.
L] w .w 56/3 | -46/3 | "23/3 [ -46/45 | 46/315 | -23/2205 | 3779380 39463
- 24 -28 84/3 -28 16/3 ~4]7 2763 -2/5670 | 2.3180"
we have
H,=—logN%*+1, |,
where

L= 1\08%:5.%:&5@ [e2 (Paol2))’] 2%z . ,@

H?w Enmmam_m (6) we calculated numerically with accuracy of 10~ and their values are
given in HmE.m 1l in the last column. We see that the higher is the quantum number
n the larger is the probability uncertainty in electron location. With (4) equation (5)
turns out to be

HY = log(na®) + Jlogn+1, . (7)

I, represents a discrete function of n which can be well fitted (with accuracy of 1%) by
a phenomenological function of the form ,

I,=a+blogn |, 8)
where a = 0.75 and b = 0.681. Substituting (8) in (7) we get the entropy (1a)

H, = _om?&wv +0.75+3.681logn + H® Gv
Since the entropy of a continuous random variable always diverges (see (1c)) it is more

appropriate to consider only the differences of two entropies because then their diverging
terms cancel. We have

AH = Hpyy — H, = 3.681 log A=+ Hv

! (10)

The difference AH is a function only of the corresponding radial quantum number .
If n > oo then AH — 0 as it should be. In what follows we shall investigate the

connection between the entropies of individual quantum states and their corresponding

eigenenergies.
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3. Energy-entropy relation for quantum states

The eigenenergies of electron in hydrogen -atom are b, = -A/(n)?,
me*

A=

and the logarithm of the ratio E,/E, 4, is

E, n+1
=21}
uom A@:+~v o8 A n v (1)

Inserting (11) in (10) we obtain

E,
Dmnmatlmzuiommm vn»w_omA:MHv , (12)
n+1

where k=1.840. Equation (12) represents the energy-position entropy relation of quan-
tum states | ¥, 0,0) for the hydrogen atom.

4. Discussion and some conclusions

When the energy of a hydrogen atom changes from value F,;; to a lower value E,,,
then the difference in energy is emitted as a photon of frequency hv = E,p1 — En,.
The corresponding change of position entropy of H-atom, AH4 = kp(Hny1 — Hyp), is
positive which means that the emission of photon by H-atom is a process in which the
uncertainty in electron localization is decreased. Recently, the entropy determination
of the quantum state of the emitting atom became important in the connection with
the new development of quantum optics which investigates a large variety of quantum
phenomena in the interaction of photons with atoms [7]. Especially interesting is the
study of a single atom inside a cavity interacting with one cavity radiation mode. As
is well known atoms in free space interact with a continuum of radiation modes which
causes the irreversible decay of an excited atom. On the other hand, under the special
conditions the spontaneous emission of an atom in a cavity can be reversible process.
The reversible and irreversible processes differ from each other by their total entropy
balance, because for the irreversible processes the entropy balance is positive whereas for
the reversible one it is zero. The determination of the energy and entropy balance of a
microprocess has some importance also for the description of H-atom as an information
sender and receiver as well as the quantum memory and operational component of the
computers [9]. Note that there are other measures of the probability uncertainty of
a continuous random variablex Z. Well-known is the measure defined by the formula
S =1~ [[p(z)]?dz, where p(z) is the function of the probability density of . Using
the H-atom wave functions we get

Seir = 1 |\ | Ynia(r,©,¢) |* dr(r, 0, )

The determination of S, for H-atom will be the subject of a subsequent paper.
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