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We compare results of two alternative approaches to the transient dynamics of
perturbed &* kinks: method of collective coordinates and a field approach using
a generalized solitary wave-kink Ansatz including excited states for perturbed
solution of the driven and damped ®* equation. The field method is shown to
give more rigorous results for transient regime of excited states. However, general
characteristics of the transient regime - fast relaxation of the excited modes and
exponential relaxation of the kink velocity are similar.

1. Introduction

In low dimensional (14+1 D quantum or 2D classical) many-body systems the funda-
mental concepts of 3D physics as mean field and the related perturbation theories fail.
Namely, in 3D many particle systems nonlinearities in respective dynamic equations
stemming from particle interactions can be foremost included into the mean fields and
the remaining correlations can be accounted for within the perturbation theories (e.g.
Hartree-Fock equations in many electron systems). Low dimensional many-body sys-
tems do not yield necessary conditions for to use the mean field concept and therefore
dynamic equations remain basically nonlinear. Therefore, systems in low dimensions
are very sensitive to various interactions: electron-phonon, electron-electron, interac-
tions with impurities, external fields, etc. These interactions can drive various phase
transitions, excited states, variety of dynamic effects, transient effects, etc.

Nonlinear dynamic equations in low dimensional physics often possess basically non-
perturbative soliton or solitary wave solutions. Solitons as travelling stationary wave
packets are widely accepted as quasiparticles of respective nonlinear field models rep-
resenting lowest excited states above the ground state (see e.g. [1])- They are often of
importance for determining the physical properties of the related systems. There exists
number of comprehensive reviews on various aspects of soliton physics 1-8] .
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The class of low dimensional field fermion models with SU(2) symmetry allows for 4
unified boson or phase description by sine-Gordon model which can be m:m;mn?m_% in
troduced by a special transformation of original fermion operators at certain additiona}

conditions (often fulfilled at low temperatures). In solid state physics these models
are continuous versions of the respective lattice models. Let us mention a few systeing

allowing for the bosonization: 1+1 quantum and 2D classical electron gas, electrop:
phonon system with ”off-diagonal” interaction (Peierls), quantum 1D Heisenberg mode}

of spins 1/2, classical 2D X-Y model, long Josephson junction, two-level models. There

exists also a number of systems described by ”®%” model which can be considered as

a short range approximation of the sine-Gordon model: electron-phonon system with .

»djagonal” interaction, domain walls in ferromagnets and ferroelectrics, an equilibrium
Landau-Ginzburg model under the critical temperature.

Weak interactions present in real physical systems (impurities, phonons, external
fields) perturb the soliton dynamics and can also destroy their stability. A compre-
hensive review of various aspects of the perturbed soliton dynamics was presented by
Kivshar and Malomed [2]. i

In this paper we shall focus on transient effects of the soliton dynamics caused mostly
by interplay of various competing interactions after switching on the interactions. If
the competing interactions conserve a total energy of the system then an equilibrium
state is reached asymptotically for large times. If the system does not conserve the
total energy, then the soliton either gains or loses energy and it collapses after some
time [8-11]. :

Let us assume that at time ¢ = fy there exists a Lorentz invariant solution of the
equation

ﬁ: - %HH = IQSTWA&“S_ Gv

of the form él(x — vto — 20)y], 7 = (1 —v?)~'/%, where v is an arbitrary constant
velocity. At ¢ = to we switch on a reservoir with a friction coefficient T and a constant
external field f which are supposed to conserve the total energy, i. e. _

\.M dzféu(z,1) n\“ dzT$2(z, 1), ®)

and on the r.h.s. of equation (1) there appear respective force terms —I'¢: + .w:
was shown first by Collins et al. for ¢* kink [12] that the condition (2) at small fields

allows for a stable driven Lorentz invariant domain wall solution ¢{(z — vt — zo)y] with .

a constant velocity v o f/T'. Moreover, this result was shown to be more general: the

function v = v(f/T) is of a universal form for various functionals Ul¢(z, t)] in equation
(1) and is implied by the energy balance between the damping and driving forces ?m_,_.

We have shown [13] that the above result with a constant velocity is achieved only
asymptotically for large times: there is certain time necessary for a system to achieve:
an equilibrium due to the acting competing forces. During this time the velocity v(t) 18-
time-dependent and phonons relax fastly than exponentially : only in the %%5@8&0@_ !

region the relaxation becomes exponential leaving the kink stable and the velocity tends
to a constant value . This transient effect is analogical to dressing of polarons or excitons
interacting with phonons during their transport in solids.
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In order to generalize the dynamics of the kinks in the case with external fields we
pave used the WKB Ansatz for the kink with time dependent parameters v(t) and Q(t)

as follows

®(z,t) = () + 6(6,1) (3)

where @k (£y) is a solitary wave solution, ¢(£,t) is a small perturbation which
satisfies equation (1) linearized about the single kink solution ®x(£7). Further,
gty = ¢ —=ot) v = (- B3(t)"12,  #(6,1) = L, dal€)exp(iQa(?)), (1) =
io(t), $n = Q. (t). The functions v(t) or zo(t) and Q,(t) or Qn(t) are to be deter-
mined. The problem outlined above was solved in the paper [13] for the &* problem.
It has been found solutions for v(t) and Q(t) showing an exponential relaxation of the
velocity and a faster-than-exponential relaxation of ¢(t) which becomes exponential in
far asymptotic region. Similar generalization is known in the theory of systems with
continuous symmetry, where the respective zero mode is excluded by introducing a dy-
pamical variable (collective variable) as an alternative degree of freedom. In this paper
we shall compare the results of both approaches, i.e. of the generalized WKB Ansatz
(3) and the collective coordinate Ansatz for a ®* kink perturbed by the external fields
f and T at the condition (2).

2. Collective coordinate approach.

In systems with continuous symmetry there was developed an alternative approach to
soliton or solitary wave dynamics based on collective coordinates as dynamical variables
which tepresent the degree of freedom (zero mode) manifesting implicitly invariance of
the respective Lagrangian against the transformation of the continuous symmetry. Rice
[14] has found a unified way of description of ®* and sine-Gordon kinks in collective
coordinates, representing them as particle-like deformable objects with center-of-mass
coordinate and the width as coupled collective degrees of freedom. One bound linear
mode for both cases was found differing only by constant parameters. In the ®* case
this internal mode is an exact eigenstate of the linearized &* equation (linearized about
the single-kink solution) whose eigenfrequency lies in the gap below the:phonon gap
edge. In the SG case there is no exact bound eigenstate (other than the zero-frequency
Goldstone mode). This puzzle was solved by Boesch and Willis [15] who have elabo-
rated a collective mode formalism which accounts for also linear modes. The frequency
calculated by Rice corresponding to the quasi-internal mode for the SG system was
found in the phonon continuum.

We shall compare results of the Rice’s collective coordinate method [16] and the
direct field method of the solution of the ®* case damped by a reservoir and in a constant
external field {13] using the Ansatz (3) and the condition (2). We show that also in
®* case there are differences for excited states when compared the results obtained by
both approaches. However, the essential characteristics of the transient regime are the
Same in both cases.

In what follows we shall summarize shortly the results of [16). The density of
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Lagrangian of our system is

. 1 .. e
hﬁeﬁﬂquvﬂe?eﬁyﬂ‘fﬁwu = |ealnlM|

22 1 ; &,
5 ealsoieTweJMi%mlaﬁﬁlw»ﬂ 5

Wi

where the field ®(z, 1) is linearly coupled to the heat bath represented as a systemisf
harmonic oscillators, ¢g and wg are constants of the field, Mg,wi are constants of E.o
heat bath, V(®) = 1(1—®?)%. In the presence of small perturbations we start from thg
Ansatz :

&(z,1) = otanh[2(z — zo(t))/1{1)] + B, @

where zo(t) and I(t) are generalized collective coordinates ; center-of-mass and %m :
width of solitons, respectively, & = *1 and @ is a constant stationary solution. The .

respective dynamic equations are derived from the total Lagrangian

L= N\A&ou.&o;;“n#,&wv = \&&hﬁeﬁaquuerﬂvavfﬁniu

where ®(z,1) is given by (5). If we assume markoffian approximation for vvouonm.om.
the heat bath with the broad quadratic distribution of the phonon density p(w) =
Aw?, w <wp, then we can exclude memory term from the solution for g (t) [16). The
heat bath is then represented by a friction force I' = w:.x:mg_ where v and M are the
same for all oscillators. Then we get for collective coordinates dynamic equations

d,d, 1 [ ¢} cos®, 1
g i mim +T5+ 50 muoWI - 5) +28( — exp(-Tt))* =0,
0

where 8 = f/(2/al'm,l), a= awlm“ ms = 2cg'wo, lo =4 and

. 1 I h

t) = ——I(t)[L(1— e
boft) = ol O[F 0=+ 6] ™)
Here, ((t) is a random force related to the reservoir which was calculated oxﬁmomaw
for the system of harmonic oscillators of the reservoir [16]. In accordance with our
expectation it is evident from egs. (7) that the problem is solved by finding the solution
of eq. (7a). Eq. (7a) can be rewritten by using Ansatz =

1

(1) = 6*(1) @

as ,
G4Tg+——g— g%~ pre 2 -eT)g =0, )
where s

2
2 __ G0 [\ s
Q= ol [cos®, + AI‘ﬁSmnOV ] s

Equation (9) represents the driven and damped harmonic oscillator with the constant

asymptotic value g2 = ??woo; It can be solved perturbatively using the Ansat?

@

Collective-coordinate vs field approach. .. 447

gty = 9 + ¢1(t) for small g;(¢) where we linearize ¢g73 ~ ¢73(1 — 391/¢s). The
mvwnoxwawso: is valid for [g1] << ¢5,1 >> [~!. When introducing a new variable
£= exp(—T't), equation (9) can be rewritten as

Mw@:nTH,lwﬁDM lQNMAwl.MVH.Q o H,Imbw.ﬂu. AMOV
Solution to the homogeneous version of (10) can be expressed as

g

g(t) = g5 + £ exp(HiFE)w(E)- (11)
Here, w(£) is a linear combination of functions
1 B
::H@Aml_.tnw&ﬂn_.fwﬁav {(12a)
1
EwﬂalwtﬁﬁmltH&WLIwSaY (12b)

where ¢(a,7;2) = 1 Fi(a,7y; z) is the degenerate hypergeometric function, z = n_uw%mu
v=13y/1- 4Q2/T2. Finally, solution for inhomogeneous eq.(10) reads

g(t) = go + 2 [gr + Crwi (€) + Cawa()] (13)

where w; and ws are homogeneous solutions given by (12a) and (12b), respectively, and
gy is a particular solution to the inhomogeneous equation (10) which can be expressed
by linear combination of products of the hypergeometric and Bessel functions (16].

The solution (13) determines very fast time dependence except of the asymptotic
region £ << 1, where the relaxation becomes exponential

g(t) ~ g + Cre” T %sin(t/Q? — 2 /4)

2 ~Tt/2 9 —rt/2 9
48] R e Ler(t— - =] (14)
4y w+3 2w+l 2 3-w 1-2
In the asymptotic region the mean square displacement for the kink center reads
e Tt 1
< g? >0= 22 +2D(t - iﬁlvﬂ (15)

where v, = w—— and D = AﬁwmﬂAEVw‘

— I'mslo melol

3. Field approach to the dynamics of the &% kink and of its fluctuations.

We shall briefly summarize relevant results of the paper [13] related to the transient
behaviour in question: When inserting the generalized WKB Ansatz (3) with ®x (z,t)
given by

O (€y) = o + Prtanh(grg), (16)
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where &,v and ¢(&,t) are defined below equation (3} and ®q, ®1, ¢, zo(t) and Qult)
are to be determined. Then, from equation (1) with the r.hs. = ® — @3 4 yen_..m )
one gets the constants ®o, @1, A, g . The damping force X is relevant for the .Edo
behaviour of the velocity: When introducing the Ansatz (16) into equation (3) with the
r.h.s. defined above, we get v

\= Zg + I'zg
=
From the condition of the constant friction A (17) we get equation for v(t),
g+ Ty — ve/V(1+9?) =0, (18)
where y = tanv(t) and v. = +3f/T+/2. By integration of (18) it is easy to find
log |sinv + vecosv| £ vev = —T(1+ v2)(t — to). (19a)
This can be further simplified for [v] <<'1 as
zo(t) = v(t) = [ve L exp(—T(1 + v2)(t — to)][1 £ veexp(—T'(1 + o)t -t (19a)

For the width of the kink one gets

1) = [y®:/V2]! = Va1 - v [1 - gm& M%WJ-:» (20)

where v(t) is given by (19). zo(t) can be obtained from (19) as zo(t) = b” v(t")dt'.
Time behaviour of the linear modes defined by the WKB Ansatz (3) with -

8(€) = Y dnexp(iQu (1) (21)

is described by the linearized equation for ¥, (€) = exp($€)¢n which reads
) ‘
¥, + (60 - 22wy, =0, 22

where an(t) = £y +2i0(t)7*Qn,  Fa(t) = [Q} — iQn — iTQn — 2(1 - 3%,
W = y2[3f(1 — 2£?)tanh(®;7€/v2) — 3(1 — § f*)cosh™*(@17€/v/2)] and 7 is defined by

the formula (3). For the solution of (22) we use the bare condition

an(t)

fn(0) - 22,

= F,, (23)

which requires asymptotic stationary solutions of eq.(22). Here, E, is known as al
eigenenergy of the non-symmetric double potential well with Rosen-Morse voamim&
(17],
2 ,
v 3f n
B = =55 — )+ (=371 = 3)’] (24)
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with two bound states : n =0 and n =1 for f < fo, where f.is a critical field below
which the bound state n =1 survives. Equation for the time behaviour of the linear
modes Q,.(t) = Qn(t) then reads

QO + (1 + veYev7) O + 705 + f() =0 (25)

Here, vc is given by (18) , vc = (1—v2)7 and f(0) =0, f(1)= 3(1-3f?). Forn =0
we get splitting of the double degenerated [17] zero mode: in the limit ¢ — oo we get
Qo = 0, Qo2 = —T. Hence, of two split modes, one is asymptotically unchanged,
the second is the zero inertia mode. For the transient behaviour of the zero inertia
mode for v << 1 we get

; 1
exp(iQo) = v(t)exp(5v(8)?) (26)
For n = 1 we get equation
29 4 Qg =0 0
dv? §="4

where g(v) and Q(v) are related to Q. (t) and v(t), respectively, by rather complicated
transformations [13]. However, for small v(t) one is able to get analytical results.
Finally, the low field time behaviour forn=11s

f(1)
T2( - 1)

iQ1(v) = — log [v — v, (28)

where b— 1= —3 £ 11— »ZC\HJW. Therefore, the bound state n = 1 is split due to
the perturbations as well. There are two possible kinds of relaxation regimes:
(a) the regime of damped oscillations for f(1) > ﬂm with two branches

r£1/2 H,m 1
iQu (o) ~ [4 + L= ) T loglvt@) = vel, (29)
(b) the purely damped regime for WMI > f(1) with two branches,
Q1w ~ (5 + 50 -4 LE) g (0 — v (290)

Here, v(t) is an exponential function of ¢ according to equation (19).

4. Conclusion

To find common features of the results of both descriptions presented in Sections 2
and 3 we have to emphasize that Rice’s collective coordinate formalism describes a
classical dynamics of a kink as a coupled center-of-mass coordinate and a width of
the kink. Effect of the perturbations on the collective motion of the kink manifests
itself as transient oscillations of the kink width and due to the coupling (7b) also as
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transient oscillations of the center-of-mass motion. The frequency of the oscillations i
a complicated function of time (equations (11)-(13)). From eqgs. (12) and (13) and algg
from the numerical solution of the equation (7a) given in {16] it is evident that the sma]}
time behaviour of the kink-width is much faster than exponential. In the asymptotic
limit of the large time the relaxation of the width becomes exponential (14).

quantum excited states of the kink described as a solution of the related Schrodinger |}
equation, (see equations (21)- (25)). Equation (25) describes the transient time de-
pendence of the eigenfrequencies which shows up again faster than exponential time
behaviour of the respective wave functions. Only in the asymptotic regime for t & oo
they become exponentially damped so that the fluctuations disappear leaving the kink
stable. The stability is implied by the energy balance condition for the competing con-
stant force and the damping force due to the reservoir. The description of the excited |
states provided by the field method of the Sect.3 is evidently much more rigorous than
the description by the collective coordinate method. The transient regime with the §
dressing of solitons is analogous to the dressing of polarons and excitons interacting
with phonons during their transport in solids. The balance of the competing friction §
and driving forces implying the transient regime is also reminiscent of the motion of a }
particle moving in a viscous fluid in the gravitation field.
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