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We present an operational approach for a description of phase distributions of
quantum states of a single mode of the radiation field. These operational phase
distributions are defined via SU (1,1) generalized coherent states. In particular,
we study generalized -coherent states based on the bosonic representations of the
SU(1,1) Lie algebra characterized by the Bargmann index k equal to 1/2 which
have been recently introduced by Buzek [V.Buzek, Phys. Rev. A 39 (1989} 3196].
We discuss very appealing phase properties of these nonclassical states of light and
we analyze phase distributions defined via them. We analyze the interaction of a
two-level atom with a single-mode cavity field prepared initially in the SU. (1,1)
coherent, state under consideration. We find a phase-locking effect via which the
phase of the atomic coherent state can be determined.

1. Introduction

Even though the theory of nonrelativistic quantum mechanics was completed almost
Seventy years ago there are fundamental problems in this theory which only recently
have been clarified. One of these problems is related to the existence of a Hermitian
phase operator of the harmonic oscillator {or a single mode of the electromagnetic field).
The classical electromagnetic field can be described by its amplitude, i.e., the square
Toot of the intensity of the field, and its phase. In the quantum theory the amplitude
of the field is proportional to the square root of the photon number operator, but the
Question is how to define the phase operator.
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‘ There exist two different (nevertheless, intrinsically closely related) concepts of h

In modern quantum optics. The first concept is based on a definition of a Her e
phase operator onmozm_&mv. The second approach is based on an operational mmmz _._wm..“E
of phase states through which phase distributions are defined (measured). m

1.1.Phase operators

From the complementarity principle (1,2] it follows that for each degree of freedory th ‘
dynamical variables are 4 pair of complementary observables [3]. This implies armnﬂ_ :
should be a Hermitian operator conjugate to the excitation (photon) number oper MS
mcﬂw that a precise knowledge of one of them implies that all possible outcomes of ~M "
suring the other are equally probable. Dirac [4] was the first to introduce a mo:dmsm .
phase operator of the electromagnetic field. He utilized the wommmo:-Emora?ooaaﬁmﬁg
correspondence principle [5] and suggested that the photon number operator 7 and n% .
" phase operator & should obey the canonical commutation relation )

(A, ] = i, (11)

and that the annihilation @ and the creation af operators of the single mode of the
electromagnetic field (for which [a, .,N: = 1) can be expressed in the polar form

a=exp(i®)Va ; il = Viexp(-id). (1.2)

It was shown by Louisell (6] and Susskind and Glogower [7] that the ::Evom-wrmmm
commutator (1.1) is not consistent with the existence of a well-defined Hermitian phase
operator (see also Refs. [8,9]). Later there were several attempts to define Hermitian
phase operators consistently by introducing periodic functions of the phase [6,10,11].
Hromm. attempts did not however solve the problem (for details see Refs. T.“w mmc
Susskind and Glogower [7] proposed exponential operators exp(i®) and m\v@Alﬂ.ev, su\Enr
are not functions of a common phase operator & [13] (for more discussion see Section
4 o.m our paper). The Susskind-Glogower (SG) phase operators have been applied in a
<w:m$.~ of problems in quantum optics. In particular, using this operator Carruthers
and 256 [14] have studied the phase properties of coherent states.

Susskind and Glogower [7] realized that the main problem in the proper definition of
a _u.wmmm operator lies in the existence of a cut-off in the spectrum of the number operator
i.:nr excludes the negative integers. In fact there arc two possible ways to overcomé
this problem of the semiboundedness of the energy spectrum of the harmonic oscillater
and hence to define the phase operator consistently. One possibility is to extend the
normal harmonic-oscillator Hilbert space to include negative number states (te. the
spectrum of the harmonijc oscillator is unbounded, but simultaneously it is mhm:wsmm
that the negative-energy states are decoupled from the positive-energy ground state
[15]). Wmam:i% it has been shown that this approach suffers from some inconsistencies
[16] which are due to the unbounded state space. The second possibility to treat the
problem of the phase operator is to suppose the spectrum of the harmonic oscillator

to .vm bounded, that is to consider a finite-dimensional Hilbert space of the harmonic
oscillator [17].

ion
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Fig.1. We plot the value of the variance of the squeezed quadrature of the squeezed vacuum
state (dashed line) and the SU(1,1) GCS (solid line) as a function of the mean photon number
in the particular state. We see, that for a given value of the mean photon number the squeezed
vacuum state is more squeezed than the SU(1, 1) GCS under consideration. This result can be
understood as a consequence of the fact that part of the mean energy (i.e., n) of the SU (1,1)
GCS is associated with a displacement in the phase space so not whole energy is used for
squeezing (see Fig.2a). In the limit of infinite squeezing both states are infinitely squeezed.
We should stress here that the SU (1,1) GCS given by Eq.(2.27) is not a minimum uncertainty
state.

Recently Pegg and Barnett [12,16,18] defined the Hermitian phase operator in a
finite-dimensional state space. They used the fact that in this state space one can
define phase states rigorously. The phase operator is then defined as the projection
operator on the particular phase state multiplied by the corresponding value of the
phase. The main idea of the Pegg-Barnett (PB) formalism consists in evaluation of
all expectation values of physical variables in a finite-dimensional Hilbert space. This
gives a real number which depends parametrically on the dimension of the Hilbert space.
Because a complete description of a real harmonic oscillator involves an infinite set of
number states, the infinite limit must be taken (for more details see paper by Buzek et al.
(19]). This limit is taken only after the physical results (mean values of observables) are
evaluated thereby leading to a proper limit which corresponds to the results obtainable
in ordinary quantum mechanics (for further work concerning the relation between the
SG and the PB formalisms see recent papers by Luks and Pefinovi {20]). K can be used
for investigation of the phase properties of quantum states of the single mode of the
electromagnetic field. In last few years the PB formalism has been applied to various
problems in quantum optics. In particular, it has been shown that the uncertainty
Product of the number and the phase fluctuations of a highly excited coherent state is
Minimized with increasing intensity of the coherent field [12]; it has been also shown
that the number states of the single mode of the electromagnetic field are the minimum
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uncertainty states [21] of light. Phase properties of a single mode squeezed v,

have been analyzed and the relation between the squeezing parameter and the meEB
the phase probability distribution has been found [22-24]. In addition phase aooﬂz.,%
of i.a cotangent states were recently analyzed [25] and the PB formalism has Mmmvmg_&
for investigation of the phase correlations between two modes of the &moﬁnoamu :mm.m
field [26]. .F Particular, the phase properties of the two-mode squeezed vacuy mﬂmsa
been mncmr.ma [27] and the interesting feature of phase locking has been 8<o&mmg .W_sw
PB moﬁmw:ma.s has been adopted to describe optical phase diffusion [28] ﬁrmmm-&m.m.n. rm
m:nn:mﬁoww 11 @ quantum-beat laser [29], phase fluctuations in a meh. with an mnMMMM
memor : S g .

o Moﬁzzwwww %MMMW nwmw_m.niom of coherent light Interacting with a two-leve] atom

1.2 Operational definition of phase

.? the .owm;Sosm_ approach the phase is a quantity measured in an experiment whj Vr
is o.o:mimz& to measure phase (at least in a classical limit). We can consider :M
variants of the operational approach. The first one is more abstract and is SF»mM.
to a quantum-mechanica] description of an overlap between the measured state and
the Hommn.m:om (phase) state. The second variant of the operational approach is more
pragmatic and is related to a direct measurement schemes via which phase information
about the system under consideration can be obtajned. .

1.2.1 Phase via overlaps with phase states

dependent distributions obtained via a quantum-mechanical overlap (scalar product)
between the reference Awrm.mmv state and the state under consideration. As a prototype

of this approach we can consider the Vogel-Schleich operational phase distribution [33]
defined as: b

Py (8) = N [(10(4)) s, . (1)

where N mm“ a normalization constant and [¥) is the state to be “measured”. The
<omo_-mnr,_o_o.r phase-state” [®(#))vs is defined as a rotated eigenstate of the position
operator ¢ with the mean value of the position equal to Z€ro, i.e., .

[®)vs = U(¢ ~ 7/2)|q),

where U(g) is the rotation operator defined as usually

U(4) = e, (1.5)

and [¢) is an eigenstate of the position operator (dlg) = qlg)). The particular choice
of the. phase ¢ — 7/2 in Eq.(1.4) is related to a choice of the reference phase equal
.ﬁo zero. We remind us that the phase distribution (1.3) can in principle be measured
in m.no_mm-?mm process, because fluctuations related to the measurement (filtering) mnm,
eliminated due to the specific choice of the reference state which is characterized by
zero phase fluctuations.
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Fig.2. We plot the Q-function of the SU(1, 1) GCS given by Eq.(2.27) [Fig.(a)]; the @ function
of the squeezed vacuum given by Eq.(2.25) [Fig.(b)] and the Q-function of the coherent state
lo) [Fig.(c)]- The mean value of the number operator in all these states is equal to 4. For
comparison purposes we also plot the Q-function of the displaced squeezed state bAva (m)[0)
for such value of parameter, that a is equal to the mean amplitude (@) of the SU(1, 1) GCS with
4 photons. The squeezing parameter 5 is chosen to be given by the relation {n|?/(1 — |n|?) =
4 - (a)?, so that the total number of photons in the displaced squeezed state is equal to 4

[Fig.(d)]-

1.2.2 Phase-space measurements

There exists a more pragmatic approach to the phase measurement, when the phase is
associated with a quantity measured in experiments which are considered to be quan-
tum counterparts of experiments assigned to measure phase in the classical regime
Eg-wmu. We can consider several types of these experiments. In particular, phase can
be measured via amplification, via heterodyning and via beam splitting.
Amplification

The first to propose a realistic scheme for a phase measurement in quantum optics were
Bandilla and Paul [39]. They suggested to strongly amplify (with the help of a linear
laser amplifier or a parametric amplifier) the microscopic initial (signal) field and to
apply afterwards well known classical interference techniques to measure the phase on
the signal field amplified to a macroscopic level. Due to the unavoidable presence of
amplifier noise, the measuring process under consideration is “noisy”. Therefore the
measured phase distribution is biased (i.e., is broadened) compared to an ideal scheme
of the measurement modelled by a direct scalar product of the reference phase state
and the measured state [compare with Eq.(1.3)] 1t has been shown by Schleich et al.
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[40] that amplification scheme proposed by Bandilla and Paul is effectively equal
& measurement of the Husimi @ function of the signal field. This means Z&W to
method proposed by Bandilla and Paul corresponds to a simultaneous phase-g the
fmeasurement of canonically conjugated observables (for details see [41]). Tt is wel] rvwno
(see, for nstance, {41] and references therein) that the @ function can be m:ﬂmgnmnawos
2.5 bropensity corresponding to a measured state providing the quantum filter ?cr.wm
§1Ves origin to quantum-mechanical noise due to which measured data are biased) j i
a vacuum state. o
Heterodyning |
Another method for a simultaneous measurement of phase and amplitude hag bee
suggested by Shapiro and Wagner [36] who have discussed the following rmnmwo&ﬁmzs
mn.rmso” By means of a beam splitter the signal at the frequency wy + Aw is mix m
S;r. a strong coherent local oscillator field at the frequency wy and is sent to a ?:M-

measurement process) about the phase of the signal.

Beam splitting
A recent ovonmao.:m_ definition of phase due to Mandel et al. (38] utilizes an eight-port
homodyne detection scheme [35]. In this set-up the signal is divided with the help of a

>

*Omm_mmm 5L : 50 beam splitter into two parts. On each of them a homodyne measurement

on the split beam corresponds to a (noisy) measurement of two quadratures of the
.m_m:m_ mm.EA From here again the Q function of the signal can be reconstructed and the
information about the phase of the signal can be obtained.

All three processes described above represent a model description of a realistic
n:mﬁ:B-EQ&miow- phase-space measurement of the @ function of the signal under
consideration.

In 2.5 present paper we focus our attention on an operational definition of a phase
state with the help of which we define a phase distribution (i.e., we confine ourself
within a framework of the approach introduced in subsection H.M.C.‘ We utilize a group-
theoretical approach for a definition of operational phase-states. In particular, we an-
alyze a bosonic representation of the SU(1,1) Lie algebra with Bargmann Eamx equal
to 1/2. We construct generalized coherent states (GCS) corresponding to this algebra.
We mroé that these states can be used for a very precise phase-shift measurements. In
Section II we briefly describe SU(1,1) GCS. Section 111 is devoted to an investigation of
wvwmo properties of our operational phase states. We conclude the paper with discussion
in Section IV, ;

2. Generalized coherent states and their application to phase -shift
measurement

It is well known that the phase noise A¢ in a coherent state |a) with large mean photon
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Fig.3. The Pegg-Barnett phase probability distribution of the SU(1,1) GCS (solid line); the
squeezed vacuum state (short-dashed line) and the coherent state (long-dashed line). In all
cases the mean photon number is equal to 4. We assume § = 0.

number 7 is proportional to 1// (see below). To be more specific, we consider the
Glauber-Sudarshan coherent state [42] defined as

Ja) = exp TNL - Q,& 10); a = |ale”, (2.1)

where [0) is the vacuum state of a harmonic oscillator which models a single mode of
the electromagnetic field in a cavity. The mean photon number of the coherent state
(2.1) is (2) = |a|?. If we want to perform a measurement of phase shifts with the help
of coherent states, then we are interested in a phase distribution w?orzﬁv which is

defined as
Pleob)(g) = N P(oh)(g), (2.2a)
where A is the normalization constant the un-normalized distribution Nw?orv@v is given
by the relation
5 . 2
PN () = [(al0 ()l - (2:20)

U(¢) is the rotation operator (1.5). After some algebra we find for the phase distribution
(2.2b) the expression (here we assume 6 = 0, i.e., amplitude of the coherent state (2.1)

is real):
Pl () = exp [-27(1 — cos ¢)]; (2:3q)

while the normalization constant reads

N = \: exp [—27(1 — cos ¢)] d¢. (2.3b)
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F; hhmh The vrmmm. probability distribution P(¢) = A/ P(¢) defined with the help of the mean
value of the rotation operator (1.5) in the SU(1,1) GCS (solid line), the coherent state

dashed line), and the squeezed vacuum state (short-dashed line). We assume 6 = @ the
photon number equal to 4. «

(long:
mean

From Eq.(2.3) it follows that P(coh) (¢) is 27-periodic as one should expect for a proper

phase distribution. With the help of (2.3) we can evaluate mean value of phase in the
coherent state (2.1)

é= \ &w?osv@v dé = 0, (2.4q)
and the corresponding variance .

(Ag)2 = 47— (4)? = \1 ’ ¢? P(oh) (4) dg. @.ws

In the large 7 limit the phase distribution can be approximated as

Peoh) (4) ~ mmlmeu_ (2.5)
T

.<<rm~.m for simplicity we assume the phase distribution (2.5) to be normalized on the
interval Aloo.u oov From Eq.(2.5) it directly follows that (A@)? ~ 1/n and consequently
the phase noise is proportional to 1/+/7. .
Phase noise can be reduced bellow the coherent-state level providing squeezed vac-
uum state is used to perform phase-shift “measurements”. The squeezed vacuum state

can be defined as (see, for instance, [43] and Section 2.2) .

€)sv = exp m (a” - a?)] o). (2.6)
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with this particular definition of the squeezed vacuum we find that variances is the
N,Lcwm_.wn:mm are reduced below the vacuum level. To see this we remind us that the
quadrature operators ¢ and p are defined as (we use units such that h = 1)

t . a-af
Elqy.’u (2.7)

+
Y

a

§= 12

3

so the corresponding variances
€1(A2)" €) = (€|2%)6) — €lele)’ = 0% z=q,p (2.8)

read ’ !

w = M%J Qw = Malwx. (2.9)
From Eq.(2.9) we clearly see that fluctuations in the momentum (p) are reduced below
the vacuum level (corresponding to Qw = 1/2). The phase distribution of the form (2.2)
for the squeezed vacuum state (2.6) can be evaluated in an explicit form:

g,

1
[1+ (02 — a2)?sin’ ¢]

*v?n_vav ~ N P(sa) (4); pa) (¢) = (2.10)

iz

Unlike the phase distribution P{°°P)(¢) the distribution PGO(4) is just m-periodic,
which means that it can be utilized only for small phase shifts. On the other hand, in
the large n = sinh® r limit, the phase noise obtained from (2.10} is proportional to 1/7.
This means that with the help of the squeezed vacuum state more precise (compared
with the coherent states) phase-shift measurements can be performed.

Now the question is whether we can find a quantum-mechanical state of light such
that the phase distribution of the form (2.2) is 2r-periodic and stmultaneously the cor-
responding phase noise is proportional to 1/4, i.e., the corresponding phase distribution
is'much narrower that P(<°h)(4).

From the point of view of the Perelomov group-theoretical approach [44] for a de-
scription of generalized coherent states, the Glauber-Sudarshan coherent states are as-
sociated with the Weyl-Heisenberg algebra. On the other hand, the squeezed vacuum
state (2.6) is associated with a particular bosonic representation of the SU(1,1) Lie
algebra (see below). Therefore we concentrate our attention on the investigation of
SU(1,1) GCS. We should expect to find SU(1,1) GCS for which the phase noise is

scaled as 1/n and which can provide us with 27-periodic phase distributions.
2.1 SU(1.1) generalized coherent states

Here we present some brief remarks on SU(1,1) Lie algebra and its application to
quantum optics [44-46]. The SU(1,1) Lie algebra consists of three generators K, Ky
and K_ satisfying the commutation relations:

(Ko, Ki] = £Ks 5 [K_, K] =2k, (2.11a)
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Fig.5 The same as in Fig.4 but the phase distributions are normalized on the mbnmiﬁ._

[=n/2,7/2].

The discrete series unitary representations of the Lie algebra under consideration are
labelled by the eigenvalues of the Casimir operator C:

C=K:-

K K_+ K Kk,
: ;

The eigenvalue of € is equal to k(k — 1), where the parameter k is called the Bargmann

index. m,om the representations of interest the states |m, k) diagonalize the compact
operator Kjy: |

(2.11b)

Kolm, k) = (m+ k)jm,k) : k>0andm=0.12, .. (2.12)

The operators K and K_ are Hermitian conjugates of each other and act as raising
and lowering operators of the quantum number m:

K_|m, k) = [m{m + 2k — 1)]"/2[m — 1, k); (2.130)
Rylm, k) = [(m+1)(m + 2)]"/2/m 4 1, k). (2.13)
Now we can proceed to a construction of the SU(1,1) GCS. There are two possible
ways to oﬂ.u:m.?coﬁ these states. One of them consist of displacing the vacuum state
by the unitary operator (see [44,45]). The second is based on solving the eigenvalue
problem @ the generalized annihilation operator & (see [486]).
Following the work of Perelomov [44] we will displace the vacuum state |0, k), defined
as:
K_[0,k) =0 (2.14)
by a unitary operator WAQV

S(a) = exp(aky — a"K_) (2.15)
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to obtain the SU(1,1) GCS |¢, k):
€, k) = S()[0, k). (2.16)

Using the disentangling theorem for SU(1,1) Lie algebra [45] the operator S(a) can be
rewritten in the following form:

5(¢) = exp(€Ky) exp(TKo) exp(—£* K_), (2.17)

where a = —L10exp(—i¢); € = —tanh(#/2) exp(—ig) and T = In(1 — [¢|?). The range
of the parameters # ,¢ and [£| is

€ (-00,00) ; ¢€(0,21) ; [¢€e(0,1). (2.18)

It is easy to see that the SU(1,1) GCS (2.16) can be expanded into the basis |m, k) as

l6,k) = (1= [ Y A%_ﬂ%

m=0

1/2
v E™m, k). (2.19)

2.2.1 Squeezed-vacuum state

In what follows we present two different classes of SU(1,1) GCS. In particular, we turn
our attention to two possible bosonic realizations of the SU(1,1) Lie algebra. One
possible realization is that with the generators Ko and Ky given in the following way:

o  Gha R Y ) 52
Ko = m_lm%\m D Ky = ?Mv . K. = w» (2.20)

In this case the eigenvalue of the Casimir operator is equal to —3/16 and the Bargmann
index is equal to 1/4 or 3/4. For k = 1/4 we obtain the even parity states and for
k = 3/4 the odd parity ones. The vacuum state for the harmonic oscillator is the state
0,1/4) and the states |m, 1/4) are equal to Fock states {m) of the harmonic oscillator.
In this case the SU(1,1) GCS |€, 1/4) is equal to the squeezed vacuum state (see [43})

g mN/2
6174 = sy = (1— fey e 3 LML ey (2.21)

2mm!

This definition is equivalent to Eq.(2.6) with the parameters r and ¢ related as £ = tanh r
(here, for simplicity, we assume ¢ and r to be real). Statistical properties of the squeezed
vacuum state have been extensively analyzed in literature (for details see review articles
[43]). Here we just remind the reader that the mean photon number 7 in the squeezed
vacuum state (2.21) is given by the relation

A = (glale) = (2.22)

e
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We also evaluate mean values of the variances of the quadrature operators § apq P
which can be expressed as

(€1Ag)’[e) = 02 = W ﬁu.r!m = .w A,\%w%v

1
> 3 S.wwa

and

€antig=or =3 (128) =1 (V- <l oy
2\1+¢ 2\Va¥il+va 2

The last equation reflects the fact that quadrature fluctuations of the p operator are

squeezed below the level associated with vacuum fluctuations (see Fig.1). :
This reduction of Auctuations can also be seen if we write down the explicit expres.

sion for the Q-function [47] of the squeezed-vacuum state (2.21). The Q-function s 4

probability density distribution in the phase space (i.e., parametric space) correspond-

ing to the complex variable 8 = z + y:

QB) = (Blp1B), (2.24)

where § is a density operator Qomolvm:m the state of the harmonic oscillator under
consideration and 18) is a coherent state with a complex amplitude 8. The Q-function
of the squeezed vacuum state (2.21) reads (see Fig.2b)

Qz,9) = V1-Eexp [-(1 - ¢)2? - (1+8)y*]. (2.25)
2.1.2 SU(L,1) GCS with k = 1/2

Another possible realization of the SU(1,1) Lie algebra is that with the Bargmann index
equal to 1/2. In this case the generators of the SU(1,1) Lie algebra can be expressed
through the bosonic operators a and af as

Ko=ala+1/2 ; k&, = ?55% . K_=a ?5_\& (2.26)

This particular realization of the SU(1,1) Lie algebra has been employed in quantum
optics by Buck and Sukumar [48] (see also paper by Singh [49]). The GCS corresponding
to this realization of the SU(1, 1) lie algebra has been introduced by Buzek [50]. This
GCS in the Fock basis rcads

I6,1/2) = 1) = (1= 1e)1/2 3 emimy). (2.27)

m=0

This states exhibits severa) Interesting statistical properties. Firstly, we evaluate the
mean photon number in the state (2.27) for which we find formally the same expression
as for the squeezed vacuum, i.e., (here we again assume £ to be real)

L= & (2.28)
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The photon number distribution P, = [(n|€)]? of the state (2.27) reads
Po=(1-¢€%)¢. (2.294)

If we rewrite this photon number distribution in terms of the mean photon number
(2.28) we find that

ﬂlﬂ!\

(+ 1)»+0°
which means that the SU(1, 1) GCS given by Eq.(2.27) has a thermal photon number

distribution. Simultaneously we underline that this is a pure state. On the other hand
this state has non-vanishing mean values of the amplitude operators @*:

P, =

(2.295)

(m + k)12
m!

(€1aMIE) = (1 - e 3 e ﬁ | (2.30)

which in particular results in a reduction of quadrature fluctuations in this state. That
is, the state under consideration is a squeezed state for which the degree of squeezing
increases with the increase of the mean photon number (see Fig.1).

Unlike the squeezed vacuum (2.21) the state (2.27) is not a minimum uncertainty
state and is described by a non-Gaussian Q-function (see Fig.2)

Q) =<0 gy 5o T

As seen from Fig.2 the SU(1,1) GCS (2.27) has nonzero mean amplitude (i.e., (€]a]¢))
moreover, this state is squeezed, so one can approximate it by the displaced squeezed
state DAQVWAS_OV with properly chosen parameters of displacement (a) and squeezing
(7). We have recently studied a possibility to utilize such displaced squeezed states in a
theoretical schemes of precise measurement of phase shifts (i.e., we have used them as
an approximation of phase states [51]). As we will show later the SU(1,1) GCS (2.27)
are even better candidates for a phase-shift measurement. One can see this from the
shape of the @ function of this state — the Q-function is squeezed in the y-direction
(ie., p-quadrature) and asymmetric with respect to its maximum value in z-direction
chm&mwﬁcnov so that the value of the Q function at the origin of the phase space is
approximately equal to zero and the function is perfectly localized in one quadrant of
the phase space (unlike the Vogel-Schleich states [33]) or squeezed vacuum states.

(2.31)

3. Phase properties of SU(1,1) GCS

To study phase properties of the states under consideration we will firstly analyze their
Pego_Barnett phase-probability distributions ,U?mv@v. The function P(¢) is formally
defined as (for details see [18])

PEDG) = tim 2 o, (3.1)

_mv 5300 Mx.
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where the state |¢,,) in the Fock basis reads

. | .
_ﬂiv = l/\H:MHomx@?:&Sv_avu Aw.wnv
and the phase ¢,, is defined as
m
&3 E= %o + wﬂ.% +1 - Awws
For the SU(1,1) GCS given by Eq.(2.27) we find the explicit expression for the Pegg.
Barnett phase probability distribution in a closed compact form:
! - fef? .
.Tﬁuwv _ . _ i6

This .&mnlvcnmo: function is properly normalized to unity and is 27-periodic. We note
ﬂr.@a. it is equal to the Poissonian Kernel. It has a maximum at 8 = ¢ while it takes
minimuimn value at ¢ = 6 + 7. In the limit [£| = 1, Le., in the limit of infinite photon
number which is accompanied with an infinite quadrature squeezing the Poissonian
Kernel tends to a §-function:

_M_@;ms@u%é. (54)
As we have said the phase distribution (3.3) is 2m-periodic. On the contrary the Pegg-
Barnett phase distribution function of the squeezed vacuum state is m-periodic. We
plot both these distributions in Fig.3. from which it is clearly seen that SU(1,1) GCS
as mmmwoa by Eq.(2.27) has very well defined phase and can be used as a very good
approximation of phase states which is much better than the approximation proposed
by Vogel and Schleich [33]. For comparison purposes we also plot the distribution
corresponding to a coherent state [a) with o = 2.

To illustrate phase properties of the states under consideration in more detail we
mww_:mam the square of the modulus of the mean value of the rotation operator QA&
given by mva.ﬁ.mvwm.m; we evaluate the square of the scalar product of the state |¢) and
the rotated state [ (¢)I€)- This expression is equal to a non-normalize phase distribution
as defined by Eq.(2,2b). We find the explicit expression for Wm?& for the SU(1,1) GCS
given by Eq.(2.27) in a form:

(1 )2 p
T3P oostd — B T e &9

Hrm. expression for the phase distribution WAEVTS for the squeezed vacuum state (2.21)
1s given by Eq.(2.10b) but we can rewrite in a different parameterization:

2 - 2
P9) = [€li@)ie)] =

B(sa) () — (1-1r?) 6
T oot — 0y -
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finally, the phase distribution P(<°")(4) for the coherent state |ar} is given by Eq.(2.3a).
we plot the corresponding normalized phase distributions P(¢) in Fig.4 from which
we see that SU(1,1) GCS are much more sensitive with respect to phase shifts than
coherent states or squeezed vacuum states. In Fig.4 we consider the phase to range from
-r to m and in correspondence with this the phase distributions are normalized on the
gn interval. Due to the m-periodicity of the phase distribution (3.6) for the squeezed
vacuum state P(%(¢) has at ¢ = 0 the value even smaller than the coherent-state
phase distribution Pt (). For comparison purposes we plot in Fig.5 the same phase
distributions but assume the normalization interval to range from —7/2 to 7/2. We
see that with this normalization condition small phase shifts can be measured more
precisely with the help of squeezed vacuum states than with the help of coherent states.
Nevertheless, the best performance can be obtained if SU(1, 1) GCS with the Bargmann
index equal to 1/2 are used.

4. Discussion and conclusions

To understand phase properties of the SU(1,1) GCS with the Bargmann index equal
to 1/2 we turn our attention back to the Susskind-Glogower phase operators exp(i®)
and &xp(—i®) (see [7]). These operators in the Fock basis read:

E_=&p(i®) = Y _ [n)(n+1], (4.1a)
n=0
By = &p(—i®) = Y |n+1){n|. (4.1b)
n=0
It can be shown that:
E_Ey=1; E.E_=1-10)0] (4:2)

which means that m,+ is an isometric but non-unitary operator. We can easily check
that the SU(1,1) GCS with the Bargmann index equal to 1/2 is an eigenstate of the
Susskind-Glogower operator £_

E_|6) = ¢le), (4.3)

which explains exceptional phase properties of the SU(1,1) generalized coherent state
under consideration.

We can conclude our analysis with the remark that the SU(1,1) GCS discussed
in the present paper can be adopted as the operational phase states with |£| as the
“regularization” parameter. As seen from Eqgs.(3.3) and (3.4) in the limit |¢| — 1 these
States have precisely defined phase. On the other hand, as shown by Daeubler et al.
_wm_ for [£] < 1 these states minimize the phase uncertainty (quantified with the help of
the Sussmann measure) for a given norm and a given mean photon number, i.e., these
States can be considered as realistic phase states and can be used for investigations of
Phase properties of physical system. One of examples we can consider is the problem
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of a measurement of the phase of the atomic coherent state. To be specific, let 4z
assume a aéo-_m.<& atom interacting with a single mode cavity field. This m%mmﬁd oE ,
be described within the framework of the well-known Jaynes-Cummings mode] ?wﬂ

The atom is supposed to be initially (¢ = 0) prepared in the atomic coherent state- oy

IIHI!I%.AS ',
ET,\M_ ) a [+), x

where _U.rm vectors [+) and |-) describe the upper and lower levels of the two-level mnmm,m :
respectively. ,Hr.m phase ¢ has to be determined. If we assume the cavity field mnmﬁw:;
to be prepared in the SU(1,1) GCS described by Eq.(2.27), then at time ¢t > ¢ ﬁrw.,

atom-field state vector can be expressed as:

() = D [Calt)lm) + Dy (t)]=; )],

where the probability amplitudes Cn(t) and Dy (t) are given by relations

1 — 2\1/2¢n

Cult) = ( _MVMV 3 Tm sin\/(n+ 1)1 — e cos \/(n + :ﬂ_ ; (4.60)
1— [g]2)/2gn~1

D, (1) = ( _m_/\vm ¢ [ie" sin \/nT + & cos Vo], (4.6b)

where 7 is the scaled time (7 = Mt and X is the atom-field coupling constant in the

&_uo_amvwaoiamio:v.mwos m@?.mv;mo:oémarwﬁmrmmnoamom:ﬁnmwo: W (t) defined
as ,

W(t) = (ICat)) = D, (1)]?) €%))
n=0

is in the limit _m_.lv 1 equal to its initial value for any ¢t > 0 providing the atomic-
coherent state ¥ 1s equal to the phase 6 of the GCS under consideration. Otherwise

W) Omow.:wnmm in time. Using this phase-locking effect one can determine the phase of
the atomic coherent state (4.4). “
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