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The eigenvalue problem for arbitrary linear combinations of the quadratic boson
operators of a single mode is discussed and reduced by using group theory for the
SU(1,1) group and its complex extension to standard problems for squeezing-like,
rotation-like and cone-like operators in the real case. It is shown that the Killing
form has a great importance for this reduction. Furthermore, it is discussed how
the solution of the root equations allows to displace the eigenvalues of squeezing—
like operators and to determine the new eigenvectors. These root solutions are
explicitly found. The general considerations are applied to solve the eigenvalue
problem for the Hermitean squeezing operator K; = I.I_mAOW + PQ)

1. Introduction

The solution of the eigenvalue problem for arbitrary linear combinations of a boson

annihilation operator @ and a boson creation operator a! leads to squeezed coherent
states and is explicitly given in the nonunitary approach by [1-3]

(a+¢a")|B;¢) = BIB; ),

18;¢) = exp Ama* - Wnﬁv J0) = exp AIW:SV 18;0), B.,¢eC,

(1)

where |3;0) is a nonnormalized coherent state and |0) the vacuum state. The same re-
sult can also be obtained in the unitary approach by applying a unitary squeezing-like
Operator with linear combinations of the quadratic boson operators in the exponent onto
coherent states with transformed parameters in comparison to (1) [4]. The eigenvalue
Problem for arbitrary linear combinations of quadratic boson operators is therefore the
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Eigenstates of squeezing an

eigenvalue problem of squeezing-like and rotation-like operators. Th
eigenvalue problem contains a variety of interesting states including
herent states 18;¢) and the Schrédinger cat states formed by arbitrary mzvmn,wg..w
of |3;¢) and | — 3; ¢) in the degenerate case when these linear combinations gpq
resentable as the square (a+¢at)2. It was shown the negative result that the up;
Squeezing operators do not possess proper normalizable eigenstates [5, 6]. Positjyez
sults for the explicit form of the eigenstates of unitary squeezing operators which
a continuous spectrum and are normalizable by means of the delta functioy
9]. It is also possible to regularize such eigenstates
normalizable, for example, by infinitely small changes of the unitary

to certain nonunitary squeezing operators [10] or simply by regularizi
in the explicit solutions for the eigenstates.

tisfying the commutation relations
i

; = . 5
(K2, K3] = iKy, [Ks, Ki]=iK2, [Ki, Ko] = —iK;. ©)

d sa

i t necessarily Hermitean operators)
o tors, the operators (K1, K3, K3) A.uo : ean o 4
tncmwamhwwmwn“wou relations (5) define a basis of W Lie m%._.mowguw_“w Mu vnrMn mm
with L2 7 ~ sl(2,R) ~ sp(2,R) in case of real coe cients 15ye)
glecbrs e % wmoa MAM N.VVZ %Awm C) in case of complex coefficients Ma ,e_..anwmz.w*%.
; v._ox o.ﬁmﬁ&. (K, ~m§ K3) according to (4) gives one of the wOmm:M e _.MM Muﬂ T
ﬁ«:»_@omnwonvnm Aoa,-m_. realization by single and multi-Boson operal .o_._m 117,
(his Lie ° 67 ding Lie groups of elements X obtained by the exponentia Em.w%vw mQ e
The correspda ch 1) ~ SL(2, R) ~ $p(2, R) in the real or SL(2,C) ~ : o C)in
o oxnﬁ_ﬂav MMM (see H.S 18-20]). The commutation relations AS are Eamnmm,u\m%.\o o
e oo o relati v the Tie slgebra su(2) ~ so(3, R) of basis operators (J1, J2, J3
Lie algebra of the quadratic combinations of boson operators allows to reduce the gener, i epommutation nowﬁ%ﬂw WMVM MMM EW&@nMEE:emaos e po o MQAJ%
: . : .
.”_r .M.MMMWSMMAW <o% different because the first is a uonﬂuon__%@mn Ammmocwm. QWMnWmMm gM
" K3, K3) another basis (K4, K_, K3
1genvalue problem of one Squeezing operator to oth - second is a novaQ.mnome WMM&M %M—.MMM_. %:a wmvl e fion b
Squeezing operators for the same eigenvalue and the transition from one eigenvalue Lie algebra su(1,1) is o "

Squeezing opergts
ng the singulay

1 _1 4
. = iKy, K_=za*, Ky=zad”,
squeezing operators. Ki: = KixiK,, 9% 2

1 ;
s + = _(g! T v A@v
- T+ Kyt + Kazd, 2F = (2l Fim),
2. Basic notions and problem reduction # 2 K- Ko 2

We consider a single boson mode with the following connection between the annihi

with the commutation relations
lation and creation operator (a,a') and the canonical operators (Q,P)

- 7
(K3, K] = +Ky, [K3, K_]=-Ks, [K_,Ki]=2K;. 7
i -3 iderations lead-
a= C/M_.MIM.U , al = Qa\wq“&u y [a,al) =1, [Q,P]=1inI, Before attacking the eigenvalue problem (3) we make some general consideratio
. o e UE ing to some reduction of the problem.
where I denotes the unity operator in the Fock space. As was already said the eigenval A

to the
*' The solution of the eigenvalue problem for nrno ovawmnmw wmmmmmw“ MMMm—E;mQ
Tt of S eigoralue Eoc_mﬂomo_.no%rﬂsvawmawnvm mm:% the nonunitary generalized
8 4 : i
eing operstons o complen (53,2, These quecaing e intand, t sohve
fold no_mmmo... our problem. First, they are the operators for srﬁoréhh_na—o the general
the eigenvalue problem and second, they are the operators €~<5 the commutation
linear transformation of the basis op anmﬁm (K1, K, w.u.v Eowo@: mm_u:gaw operator z
telations (5) or (6). Consider the similarity mmwmmmonawsou o tary) squeezing operator
of the Lie algebra sl(2, C) with an arbitrary (in general nonunitary

S= exp(is) according to

example, eigenstates lg) of Q or [P} of P) but in the nonunitary approach one can also

make the transition to the cases of nonnormalizable eigenstates, for example, of the
creation operator at (see [1, 3)).

We now pose the analogous eigenvalue

problem for arbitrary linear ooEvmbwnmoE&m%
the quadratic boson operators a?, a!? and ¢

at+atain the form (we use sum convention)
zlw) = wlw), == K,z! + Ky2? + K328 = K;z? |
where (K, K,, K3) are three Hermitean basis operators defined by

! elze ™™ = ¢ Kjzle " = Kjz! = Nm.._mw..ah. = K;z",
¥ = =
. 1 1 . | " i
Fi= @+ = 2@~ Py, K, = K} =S
i i basis
~ ix St t s is represented in the
" @.M?M ) nﬁv ) IWAQE.*. PR (K = .QJM The explicit form of the matrix S; when the elemen
~ ! QD_ K3, K3) is given by
Ko = jlaa+ate) = —(Q+ pY)),

is 5 5 =i == umﬂ
(K, Ky, K3) = € (K1, Kz, K3)e™ = (K1, Ky, Ka)
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¥
L+((s°)? - (s%)?) et S — sl erl —8P85% + sl s3chely
« lmw%l%.%nrwlf H+2mJ~I?mvdm~$wlf o._quq +.wumwn_.mi
l.wumwﬂQ - .m.p.wunrnwluv .wum_u* - mwmun—_“lmv 1+ AAmmvu + A.m»vmvmw%,l,
X LHTH
o= ,\?.Jm +(s2)2 - (3)2, s= K;st, . U&W&A

The matrix in (9) gives the so—called regular representation of an element ,mwmwmu ,
the Lie group SL(2, C) in the basis (K, K3; K3). Its determinant is equal to 1 byfii}

is only a consequence of a more special property of this matrix which can Vm_m;mww?
by the preservation of the so—called Killing form (x, y) which is 2 symmetric bilige.
form of two arbitrary elements z and y of the Lie algebra and which has in our case th
following special form .‘

4

TETEED.

(z,y) = QQ&.‘M\. =—glyl — 22y 4 234

In general, the metric tensor 9ij = gji of the Killing form can be defined by the structiis

oommmomm:nm&.»mznrmmgmn& commutation relations of the Lie algebra [Ki, K] < i
=1

by g;j = ¢ ix¢5 (mostly defined without factor 3, see [18-20]). The preservation ‘of tl
Killing form (z,y) = (', ') with the invariant metric tensor g;; under transformatidns
of the form (8) can be proved for arbitrary Lie algebras but one can also easily check -
this for the special transformation matrices (9) together with the special Killing form =
(10). o

The invariance of the Killing form (10) means in particular the invariance of
() = @) = (") ~ (@ = (2 = (1) - (672 = (2,2).

This is for real (z*,2%,2%) equivalent to the squared distance in a pseudo—Euclidian

space with two space-like and one time-like coordinates and the transformation Bmamw..
ces in (9) form for real (s, 5%, %) the proper Lorentz group 5O(2,1) of this space'In
analogy to the terminology of space-like, time-like and light—cone vectors, one nmﬁw.mm*_h_a

transformation exp(iz) with real (2!, 22, 23) squeezing-like for (z,z) < 0, aoamﬂ@mw.,wm
for (z,2) > 0 and cone-like for (z,z) = 0. The totality of complex vectors (z', z2 mwv
forms a three-dimensional complex Euclidian space and the transformation matrices i
(9) with complex vectors (s',5% 5%) provides a certain parametrization of the propeh.
three~dimensional complex orthogonal group SO(3,C). We call the, in general, noni
tary operators e’ = exp(iK s ) = S(s', 52, 5% in this case generalized squeezing op
ators.

Do
The above considerations show that if one has the solution of the eigenvalue pr blem

for one operator according to (3) then one gets, at least formally, the solution of th

mﬁw:ﬁ::mnnov_msmo_.m: ovmnwﬁoqma\ooszmnﬂ&smgs. by the similarity transforma
tions (8) as follows .

z|w) = ww), z'e* W) = e peisels [w) = we' |w) | o 12
|

and we know already that only operators z and z' can be connected if they poss 1

the same value of the Killing form (11). The restriction to real vectors (s!,s2,s3) an
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. nitar
Hermitean operators s and unitary ovmwmeo..w.m e*® can Uw called n“mm n_w _,HWM
o d its extension to complex vectors (s!, s, s%) the :o::s;_mw% ww% Eo::.:owu
i tors z in every case only w
; ach connects Hermitean opera . ‘ itea
unita w_u%momm:no the eigenvalue problem of an operator is not mwmoﬂ_smmmmowwuww S&:M
ovm__., m.p?_vwwmzmz of this operator with a complex ::Muvnn Mm vmim MM Mwﬁ ,”M iy MOn alue
Ly tative of each such class. Howeve . |
for one representati : 5 on with
v_.ov_@dw 0=W:Ev2 destroys the Hermitecity of an ovmw.maon and one nwﬂ““:: M%mrm
: noamnmxam& numbers to keep the Hermitecity and this cannot oﬂ.mnmo %momsamn»mm
o ing-like and rotation-like operators are
illi z,z). Hence, squeezing . onnected
._C__Em ﬁom.wnw wvwnownr. .? the unitary approach, one has to oo_”éw,“wv Mrnmrwmm malue
in the :am one representative of Hermitean operators from each of (three classes
probiers Mn? z) = 0 and (z,z) > 0 and for a larger two—dimensiona ma ifold o
(e.2) < m m of non-Hermitean operators. The nonunitary mvvaowo:..mw.a, in vs BW wm
i lasses but the action of the nonunitary operators € is mostly m
e e A itary approach is that it unifies the
difficult to handle. An advantage of the =M~_Eu._ we Mu o
i es .
izable and nonnormalizable eigensta ;
ﬁowﬁﬂ_mi oﬁ:o_.MMHMNo_. In= AI:&: commutes with arbitrary operators z defined by
The parity o =

), ile. (N = a'a)

there
%n_.omor an

3

M,a2]=0,M=0"=(-1)" =) (-1)"|n)n|. (13)

. n=0

it d —1 for
It has the eigenvalue +1 for all superpositions ow mMmz =:oEWow_. mnwg.mH w_uwoﬁ“wmwwmgaom or
iti 2m+1),(m=10,1,2,..).
tions of odd number states | , . ates of
w_“ mcvﬂ.moﬁ .“oeo a given eigenvalue w are two-fold momonmz;m. in the “s&o_o wuom : P
" % one. o_~.~m choose a basis of even and odd eigenstates to arbitrary eigenvalue
and one ca
14
elwg) = wlws), Mwe) = o). (14)
. i d can be
i i i the action of the operators z an .
s reducible with respect to :  be
M,ro o MVWMMo_wz even—number and an cdd—number Monw space _W_E _Uramﬁwwmmﬁﬂwmﬁv_o
ﬁmMMvEﬁWMMMm a certain arbitrariness because in vo_mr vma.sw_ spaces the MMMM © imeducible
wmv_.mmgamao: of the Lie algebra of operators z is acting. This can
¢ q 15
C=¢9K;K; = K- K} - K3, (15)
i is for the
which according to the definition has to commute with all onmwﬁoE z and is
n . . e.
considered representation proportional to the unity operator I, 1.

Casimir operator C

w
w || (16)
— mw\nlwh k= 3
C = 8~ ( ) 4

despite the reducibility of the Fock space.
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3. Roots of the quadratic boson Operators
We now solve for arbitrary operators Z given by (3) the following root €quatigy:

_..Hu mQ.._ = ae, 5

Le. we determine the possible roots (complex numbers @) and the oon.nmmwoum_mm
operators e, This equation has the form of ap eigenvalye equation in linear. .w_m_o..
formulated for the projection Oberators to subspaces of the eigenvalyes where
matrix multiplication js here substituted by the product definition ip 5 Lie algeby,
means by forming the commutator. The solutions of this problem leads tq a fur

oaommmgéonoﬁ ?vao an elgenvalue ; ope can construct pew €igenvectors tq oth
eigenvalyes according to (l=o0,1, 2,..) " e
Teglw) = feax 4 o )|w) = (w 4 a)eqfw), ,

2ea)lw) = ( Hla)ea) W), €% (e0) )y = ) ea) ).

&

= +/(z,7),

€a Ky(z'23 = ioz?) + Ky(z223 4 iazl) 4 K3((z')? + (=%)?),

L.
where ¢, ig only determined up to an arbitrary Proportionality factor. There is w_mw I
the trivia] solution o = ¢ with ey = 2. I¢ is remarkable that the root operators €a
cone-like operators according to theijr Killing form -

A_mc:mo‘v _— :HJM + AHMVMyw — A&ﬂﬁ.& - N‘Q&Jw _ A.s.w.@.w +~.Q.s.~vu =0.

The solution (19) shows that for real (z,22 23) apq therefore Hermitean operato
z the roots o are either rea] or imaginary ip dependence on the sign of the Kill
form (z,z). For Squeezing-like operators ei* is (z,2) < 0 ang the roots o beco
imaginary. This has the consequence that the Toot operators e, according to" (19)

S 419
es i tors
t ON.MQEQQNu.Em. and other QC&HN:G boson operato

f ta

mhhmb R

19)
tor K; one finds from (

ial cases. For the operal

ider some special

im consl

Huuqawuowam”ov. . w
- ~A©+.vv~ o= —i, mnuw‘m+~QHMwA©l~uvu
= 4, ea=Ks—Ky= 5 o
K
= 1=90,27=1,2°=0),
= K (' =0,2 . 3
" - " HQ& Q"lnﬁ mn“&ﬁu'&ﬂ»numww .
a = +u.~ mﬂ".wﬂw:—-%ﬂpluwm ) AMMV

.
, <GM9~. te nrﬁ Qmmﬁﬂcwr.—o ﬂvﬂo—vwﬁa M.OH RTO O—u@—.QOOH NA‘N as a v— esentat 1ve _:H
i a re

io —Wﬂmﬂ m m

Img—ilke (3 ope Orf. ( —=m
~—n ”—uﬁ Hanﬂﬁwb v HW” T H.JOH H—HO OVGH”HOH .NAW one ovnpuzm —U a —-H.=H
B—.—OON m

'y
procedure

= w“OvHu”Hv~ HN
z K3, AH =0,z 1 12 a=-1 m~D “Nm.wln.mﬂm =K = MQ ]
o = +1, e, =K, +iK: =K, = mn 5 2"

m ﬁ
\H—rm OUOHNHOH@ &ml—. N.muﬁ— bml are m&.nm—num thm ~Oc<®_”~= OvOHWQOMM 1n R—HO m:g aces O— even

and odd number states of the Fock space.
4. Cone-like operators

\ as e~ = ith (3) and
i by (z,z) = 0 leads wi
ke operators  defined z, %) and

” mmmmmuminwao MUM@MM_GMME_M:M%M*. squared linear combinations of boson opera

to the following ]

= 4iz?2 4 - fad # Hlﬁ,\aulauv . (24)
Z —— ¥4z
z = 1 Aa/\sp iz? + at /21 ﬁa&v = A@/\
4

)

zl — iz?

=3
oﬂ:ﬁﬁ@ approach (unitary approach, see [21])

he abbreviation ( = one can solve the eigenvalue problem
If we introduce the abbrev =

in the following equivalent form in the n

(a+a'()?|Bs) = B*|B+), T|Bs) = +|Bs),

¢ v
18) = glexp(Ba!)  exp(—pal)) exp (50" ) 0

1 — (25)
= 080 £1-50),

Srmwm B e the (nonnormalize ee i e ) introduced
¢) ar e t states in the notation in
lized squ zed coheren ¢ .
i 1 _ w v he m»wmmm _QWV are mm,woz here in the nonnormalized form but rm% are
In m s ww. 1 .
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Fig. 1. Wigner quasiprobability for eigenstate |wy) of the operator K> with even vw:..a,‘ :
[normalized by means of the delta function (Wilwy) = 8wy — w))) :Z

IS L

normalizable for [¢| < 1. The nonunitary approach has the advantage that the states.
[B+) can be also extended to I] > 1. They are even and odd cat states formed from"
Squeezed coherent states instead of the usual coherent states. The eigenvalue problem
for the operators (24) is completely solved by (25) or by linear combinations of 18)
and |B_) after simple transformations w:mémsm::on&mgmm:508. A_

5. Eigenstates of operator K,

We consider the Hermitean operator K = —L(QP + PQ) corresponding to the

unitary squeezing operators exp(iK2z®) as a representative for the class of unitary
squeezing operators. First we show the way one easily obtains the solution of-the

eigenvalue problem of K to the eigenvalues +£. The inverse operators Q™! to @ and
P~1to P are not uniquely defined s

ince the eigenvalue 0 is among the eigenvalues of
@ and P but it is natural to define

+o0 +o0

dq ﬁw+&€ l)al, P'= [ dp ﬁw+&§ )el, (29)

— 00

Q=

- 00

where P denotes the principle value and ¢ are arbitrar

Y constants determining the.
degree of nonuniqueness of Q-1

and P~! and where |} and [p) are the eigenstates of

e ti 21
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_ " -
Fig. 2 Wigner quasiprobability for eigenstate Jw=) of the ommwmno_. K3 with odd parity [no
Bmm._.mNmm by means of the delta function (W’ |w_) = é(w- — wl )l

Q and P in the usual way. From (26) it follows
+0o0 1
H —_—
- dgP=|¢) +¢clg=0) ¢ ,
@ a_ﬁ”Ov B /\Mﬂ —o0 7 Q_Qv

1 * pl =0 (27)
- ~ =lp)+clp=0) .
Plg=0) = YT dpP~|p) +clp

—o0 p
Using this and the commutation relations (2) one finds

Lpo— i) g lp=0) = — i@t =0),
K:Q7llp=0) = lmlmﬁ@ AN Q' lp=0) 4
1 i 1) = lplg=0)
_ = o2 ~I)PYg=0)=+ =5
KoPlg=0) = QP+ 4
2 2h (28)
or
E . +o0 1
; +oo 1 (4 daP~
1 s — = —— Q\\u _Qvu
Kolg=0) = —zle=0), K[ dePrloy==7 [ diP
i o [t =i [ e i),
Kyp=0) = +M€Hov“ K> o P ME [ S p
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&mmnﬁ_cam 0 with the result (fig. 1 and fig. 2)

«i?sumM¢aﬁwvﬂ;A vv_ (34)

for J0+) respectively, where Jo(z) denotes the Bessel function and Yy(z) the Neumann
fanction with index 0. This Wigner quasiprobability depends only on the product pq
and is therefore constant on the hyperbolas pg = const.

i

wgoaev one can use n—.—ﬂ root ovOWWﬁOHm .no .NA Ounv—:u—ﬁhv m—cmﬂ n ‘MM to ~m_v—g
2 Q e ﬁ
Ouﬂ@ﬁn«&.?ﬁﬁ@ WEQ _wo QOBOn mine ﬂrm OOWH@@UOMHmem @umﬁbm&WROm. HﬂOH Ovn”wﬁwvmoq ﬂrm OVOHN

[ AT . .
Amav displaces the eigenvalue from +3 to 0 and then the operator A bwv T

1s a Hermitean operator fo di i -
y . r real w displaces the eigenvalue from 0 to a arbitrary

2pq

h

Kalws) = wlwy), [w) = exp ﬁ —iwIn A%MVV 04 )no0rm The operator exp(iK3s®) makes a rotation of the operators K; and K3 according to
©
h [n [+ : :

10+ Ynorm = @? =0), [0-)norm = W. _nwl_\ ® &uﬁw_vv exp(iKas®) (K1, Ka) exp(—iK3as®) = (K cos(s®) — Kysin(s®), K sin(s?) + K cos(s3)) .
inr L oo pPh (35)
Aws - In particular, one obtains the operator K from K by a rotation about an angle s = z

where we have added normalization f: i .1 iy s 7

t ot . o . o ., ;

(wilwl) = 5w — ") but (s 1o Hﬂw ors to keep normalization for real w in the senge K, = QGTNQMVNN SGAIanMV = Q.G?Mn*pv?m SGAan#av . (36)

The states |w,) have even and the states jw_)

position and momentum rénreseniations Therefore, the eigenstates of K; can be obtained from the eigenstates of Ko to the same

odd parity. They possess the followi
wing |
=mw.. eigenvalue by applying the operator exp(i mn*av to the eigenstates of K.

— ©(g) £ 6(—g) 2 =
(glos) = V2xlq] cxp AImE In Awlmvv ) - 6. Conclusion
Sat !
(plws) = exp(ipy w)) O(p) + 6(—p) ) pl i The eigenvalue problem for squeezing-like operators in the single boson realization
V2rp| expq+iwln va V ye+(0) =0, of the SU (1, 1)-group was reduced to some standard problems and was explicitly solved

for the Hermitean operator K. The position and momentum representations and the
Bargmann representation were obtained. The number representation of these states
leads to, in general, unknown polynomials and was not discussed. We obtained also
the solution of the eigenvalue problem of some other quadratic boson operators as, for
example, the right-hand and left-hand eigenstates of the operators a'(a + (a') and
(" + ¢*a)a but could not represent it here.

“a1)

%MN.M WMMW Qmsommmv mow<M~mEovm step function (©(g) = 1 for ¢ > 0),0(9) =0 ».o_.%,A,, .
. € ¢+ (w) are (little important) phases which we do not give he s
. not give here. It.is:
Interesting that the states lws) lead for real w to the same uEwwmmum_um&mmﬁwm_”“mo%m

. 39
Ms._ﬂ_ ’ ; ALV

(glws Nws |g) = %_i, (Plws)wslp) = References

—U 5&05& OA w N.uﬂﬂm 0@:”— mOn even w:& oAmAm @~m®=mnm‘n®m. Hmu—m 18 -Occ®c0~ not ﬁmﬂ@ nﬁm;
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: . . : y means of the delta function. A ond-
Ing nonnormalized Wigner quasiprobability has been obtained up to now MM_N@N“ the
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