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UNPOLARIZED LIGHT AND CORRELATION FUNCTIONS!
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A general description of unpolarized light in a classical and a quantum mechan-
ical framework is presented. We classify common properties as well as typical
differences distinguishing two types of unpolarized light. These properties are
transferred to the correlation functions. Using the formalism a few examples are
given.

1. Introduction

Natural light surrounding us every day is unpolarized in general, and for a long time the
only light available was unpolarized thermal light [1]. But in the last few decades new
techniques were developed to generate light with photon statistics differing from the
thermal distribution which also could be used to generate various kinds of unpolarized
light. Although unpolarized light is not polarized a priori it can have some interesting
properties such as polarization correlations. For instance, when a beam of unpolarized
photons is sent to a polarization independent beam splitter, the polarizations of the
emerging beams can be correlated, as was recently shown {2], [3]. It was suggested
that they can be measured in Bell-type experiments similar to those performed with
polarized light first by Ou and Mandel [4]. However until now unpolarized light has not
been studied systematically, even in classical optics, to consider this and other prob-
lems in general. In the literature [1] one speaks of unpolarized light when the coherence
matrix is diagonal with the equal mean intensities (ExE.) = (E; Ey) of the two orthog-
onal polarization modes as elements. Equivalently the three Stokes parameters vanish.
From our point of view the above mentioned definitions are not sufficient to describe
unpolarized light in general. A general approach was proposed in [5]. Here we follow
this treatment: We require that if we perform an experiment measuring any physical
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ght beam in a basis system of two orthogonal modeg
btain the same result after a rotation of the system aroy
the axis of propagation by an arbitrary angle ¢. (Actually the rotational invariang
also satisfied by circularly polarized light which must be excluded.) In additi
take into account the property of natural light to remai

phase retarder [1). The requirement of rotational invariance must be sati

linear polarization we must o

2. Unpolarized light

Here we present a short summary of the main characteristics of the description. of
unpolarized light given in [5]. To define unpolarized light a set of requirements must b
satisfied in the mathematical description: .
(i) We require, as the first necessary condition, all measurable
larized light to remain unchanged when the z-
the axis of propagation. .
(ii) Since (eventually partially) circularly polarized light must be excluded we in
troduce a second (necessary) condition: The field
operator in quantum mechanics must be symmet
handed circular polarization.

(i)

field strenght E, and E,.

Fulfilling the (necessary) conditions (i) and (ii) only, we arrive at a form of :uvuwm -
ized light we classify as type II. When c

ondition (iii) is satisfied in addition, we speak
of unpolarized light of type 1. o

In classical optics the field properties are determined by the normalized distribution
function f(E,, E,) for the complex field strengths E, and Ey. 1t is advantageous to

use the representation in the circular basis which is connected with the basis of linear
polarization by the unitary transformation

(2)-5( 1) E)

Unpolarized light of type II is described by a distribution function of the form

i
properties of unpo-
; ¥-basis is rotated by an angle ¢ around

with the symmetry required in (ii). Light of type I is characterized by

FE;, E) = .\.:Nws_m + _M_LMV = \.:@a_m + _m,imv = f(&s, @wv

and so it is a special case of type IL
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I[n quantum optics the requirements for unpolarized light ._mma to a ﬁ_a:mm@momuogao_.
; M _AM the basis of circularly polarized number states that is of the general form
mzm

N.M
p= W MU b?l:.:%&!i.:a&z..u:.glmﬁ_z| =vq_:v~ 125 = 3_ «Aq:_ AAV
N,M=0 n,m=0

for unpolarized light of type II. The subsciptes r and I denote the right- and left-handed
or d

IcC i i aﬁmmﬂﬁm mm.nmmﬁ. EZIE\.;.EIE»S =
circularly —UO—QH zed mﬁo&.‘wmq Homﬁmoﬂ.:\o—%. The coe ? y ;
rul : M- _ In the mﬁonmm.— case of —mmE._ of type I 05—% Q—Nmouﬁ elements are dif-
N—-nm, m-

mw__.mi from zero, and the density operator can be written as
00 N : MV
p=pn Y IN —n)eln) (N —n i(n]. (
N=0 n=0

This operator has the same form in the orthogonal basis. The PN are wﬂ&ﬁm@ :MM.T
i i i d on n. In the following we focus on the
tive coefficients which do not depen : . .

Mmmwnca mechanical treatment, similar consideration can also be performed in the

classical framework.

3. Correlation functions

To characterize unpolarized light we consider correlations between the two ogwﬂmomﬂw_
modes of linear polarization. The correlation function of the 2k-th order related to the
two modes of linear polarization is defined as

GkeP) = (Bn)e=o () (B} P (B,)?). ©)

The brackets denote the classical average or the n:msﬁ.:B mechanical o«taomwfw.z <..M.:o..
The transition to quantum mechanics is readily om:_& out F\. Sﬂmom:-% o avm ar :
ization factor which we will omit in the following - y
apart from a common normaliza 4 e . : e
i ihilati d @, etc. written in normal or g
hot eation and annihilation operators a; and @, i
Moﬂ@ﬂﬂmnmro density operator is given in the basis of circularly polarized states, we have
t the following procedure: . .
° vmwnmmﬂn start from armo most general form (4) of a mm:m_@. ovoﬁma.on mﬁ ﬂ:v&mw_sm&
light and determine all correlation functions of the order 2k in the circular basis

w N -
B = ((al)*(@)") = (@)* @)y = Y Y pn-nn @ M

N=0n=0

CEM = (@l (@)@ ) @)y = »_A»vL WU Mzk;nzé_: ANMHMV A“v (8)

v N=0n=0

All other correlations of the order 2k vanish due to the required nonmro:@m _M<mm,~wﬂoww
The remaining off-diagonal elements of the density operator for unpolarized light
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type II give rise to additional expectation values AEU»EU»SLN (@)
With respect to correlations of 2k-th order we do not have to ta
quantities.

2) In a second step we express the correlation functions defined in Eq. (6) in ¢
circular basis using a transformation equivalent to that in Eq. (1) for the annihilatjon

operators. Only terms of the form (7) and (8) are different from zero. Thus the genera]
form of the correlation functions in the orthogonal basis is i

where k.
ke into account the

k-1
Gl = 9=k ()2=F | (1 4 (~1)=+8) B®) 4 > P(vik,a,B) Clm

y=1

¥

where

k—a o k-f g P a \nlh R
k=3 £ 5 8 (5 (2) (7))o
8(p1 + p2 — 7)8(v1 + v2 — 7) = P(y:k, 8, o). (10)
Depending on the values of a, 3 and v the expression P(y;
of Jacobian polynomials eventually multiplied by a prefact
@+ is an odd number the following relation holds

k,a, B) reduces to a E.o.@:mm
or. Under the condition that’

wA-v\w\a‘Quuv = IwAW - Qw\a_Q:Qv.
In the orthogonal basis now we specify in analogy to the Egs. (7), (8)

)

k—1 2
B®) = G*i0.0) = 9k |9 p(k) 4 > 3 Clki)

y=1 i

k=1
Ckie) = glhia) — 9=k 2B%) 4 M P(y;k,a,a) CFM

y=1

b

and ifa # 8
D) — lkia).

The reqirements for unpolarized light are satisfied by the correlation functions,too}
The demanded rotational invariance leads to a symmetry with respect to an exchange
of the, z- and y-mode: G{kia.B) — Glsk—ak-p) Futhermore from Egs. va and QQVWM
one obtains the property G*:*.8) — Gy(kif.a) Taking into account the symmetry with
respect to left- and right-handed circular polarization one finds that Eq. (11) leads to
D% = 0 if o + B is an odd number. :

With the help of the

general expressions for the correlation functions unpolarized,
light of type I can be eas

ily distinguished from the wider class of unpolarized light of
type II. The general form given in Eq. (5) implies B®) = px) and Q%ﬂi = o).
The correlations (14) vanish and we find the relations .,

k-1 2
B®) = AUQ?& =2 -2y A»v cé),

y=1 b4
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. . 1
: i ly for unpolarized light of type . .
which &7 MW_AM&MMMF& structure of the density operator mwawﬂzmo_wmgm __Mmr»mowﬂ_momﬂm
Lo i lation functions of 2k-th order a
i between the correlation on .
us 10 om”ww_wwhmwwmnm”mma&:mou on « and 3. For simplicity we restrict ourselves to the
of type 11 d€

der where we have only B®,C(1) and D(%20) = pD(29.2) which satisfy
mozn»_r order
B® = 9% 4 p(2:2.0) (16)

. . . . Ssting
i lation functions in a matrix consis
collect all properties of the corre : onting
,_\”\m M%MM_@ correlation functions of the order w.w representing the oﬂmwmogﬁv o o
o _v_.ms& light. If we speak about unpolarized light of type 1 the matrix M;
unpola .

di al form. Using the relation (15) the diagonal elements are determined by
iagon ’

L L »LSE 5
»Eams A v mfmvﬁ
EM»V = | B®, va B, Aw ’ k—1

i tive is thermal light where
i i ix. The most prominent novaodo:&m. ¥
sm_rmna wm_m” .”M H”- MQEMMWJMR bZoH (1—p)?p" . Thus we obtain B®) = Eﬁ»ﬁlwv n.mua
the coefiicie g : . b e
the matrix NSMS is fully determined. The generalized matrix of correlation
for unpolarized light of type Il is given by

mE o u;&s . . . J
(0 ok o .
Dki0,2) 0 Cck;:2) ¢ -

0 pkiL3) 0 . &

. (18)
k 0.4 Diki2,4) . . .
EFV = | pko4) 0 . . .
. 6 . Clkik=2) 0 PDkik,k=2)
* : 0 Q?*IC 0
r . : ) Dikik—2,k) 0 BW&) \

i is the inco-
where the B*) C(ki2) D*:®P) are defined in Eq. (12) - (14). An SME%WW_M: MQ. o
herent Bmiﬁdgoﬁ omanr_mlw polarized Glauber states where S.Mnow AMZJ P
o i Ve A gl azn_g_w_w_;mﬁv?_a.m-mm%g 5 = (Jof?/2)F
—n,n, ) h L : — o - .
i ion functions we arrive at B\") = . . g
“mn”m M.wnm&%wo“w find the well known coherence matrix. _H_Mo Eﬂwaﬂn >M o MHMV:N%
5 i left- and right-han
i i j d satisfies the symmetry Gmmﬁmm: . e o
WMWM_NMMWMQE%MQMﬂ_wﬁmonm between the correlation functions cause symmetries wi
respect to both diagonals. - variance propertics we
i tion based on Invari p
starting from a general defini 1ce | o e
ogwuw_mﬁ”“wﬁws nrw_.wmglmsg of correlations between the two vo_am.zswwwomsﬁm_mamoa
unpolarized light. This enabled us to generalize the coherence matrix
light of type I as well as of type 11 to arbitrary orders.
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