acta physica slovaca vol. 45 No. 3, 403 — 406 June 1995

pHASE OPTIMISED STATES OF LIGHT VIA DISCRETE COHERENT
STATE SUPERPOSITION'

S. Szabo?, P. Adam, J. Janszky
Research Laboratory for Crystal Physics P.O. Box 132, H-1502 Budapest, Hungary

It is shown that phase optimized quantum states of light can be constructed by
superposition of small number of properly chosen coherent states along the positive
real semiaxis in phase space.

Recently, much effort has been taken to the problem of generating quantum states
that has minimal quantum noise, i.e. the uncertainty of one measured quantity of
the state is minimal. In previous papers it was shown that several quantum states
can be approximated at arbitrary precision by discrete coherent-state superposition
[1, 2]. In this paper we shall discuss the possibility of engineering phase optimized
quantum states (POS), having minimal phase uncertainty at a given mean photon
number, via discrete superpositions of coherent states. There are only approximating
mathematically constructed phase optimized states known in the literature {3, 4]. A
direct method to prepare approximate POS experimentally using degenerate parametric
interaction was proposed by Bandilla [5].

Nonlinear interaction of the field, being initially in a coherent state, with a Kerr-like
medium [6] or in degenerate parametric oscillator [7] leads to superpositions of finite
number of coherent states. Back-action evading and quantum nondemolition measure-
ments can also yield such superposition states [8, 9]. An atomic interference method has
been developed, which can result in arbitrary superposition of coherent states on a cir-
cle in phase space [10]. Implementation of experiments capable of producing arbitrary
superpositions of coherent states can be anticipated. Therefore finding coherent-state
superpositions approximating given states can be important for experimental realization
of the states.

An approximating discrete superposition can be found knowing the one-dimensional
coherent-state representation of the state [11]. As there is no such representation of
POS known, therefore we have developed a systematic optimizing method for finding
the weights and the amplitudes of the constituent coherent states. We will show that
even a small number of coherent states can approximate a phase optimized state at a
high precision.
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Fig.1. The bar charts show the amplitudes A; and the positions z; of the coherent states in
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In the further calculations we will use the Fock state expansion of | ¥p)
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For the investigation of phase properties of the state | 1¥p) we will use the Pegg-
wwwsoz *..ozbm:ms [12]. This formalism is based on a Hermitian phase operator &
Sr_o.r exists in a finite dimensional state space. Expectation values and variances o
w.r%mﬁ.& quantities are to be calculated in the finite space and the infinite limit in the
dimension of the space should be taken only after c-number expressions are obtained.
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Fig. 2. shows the topological picture of the Wigner function of the CPOS with QQ y=10. It
can be clearly seen that the Wigner function has a drop-like shape stretched along the positive
real semiaxis ensuring small phase variance.

For the state | 4,) it is convenient to choose the reference phase of the formalism to be

—x. As a consequence the mean value of the phase operator (®) = 0. In the end using
Eq. (4), the following formula can be evaluated for the phase variance:
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The algorithm of the numerical optimization starts with large enough number p of
constituent coherent states. Then it changes the parameters A; and z; systematically
to reduce phase variance (Eq. (5)) taking into account the constraint for the mean
energy (Eq. (3)).

The result of the optimization shows that even a small number of coherent sates can
approximate a phase optimized state at a high accuracy.. The number of the constituent
coherent states whose amplitudes differs form zero at a fixed computing precision de-
pends on the mean photon number. This number gradually increases as the mean energy
lises. Fig. 1 shows the positions z; and the amplitudes A; of coherent states in the
resulting coherent-state superposition phase optimized state (CPOS) for two different
mean photon numbers. The CPOS with mean photon number (N) = 6 (Fig. 1a) and
(Ny=10 (Fig. 1b) consist of only 3 and 4 coherent states respectively.

It is interesting to realize that the distance between two adjacent coherent states is
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approximately 0.9. This is in a good agreement with a former result that due o the
quantum interference, superposition of two coherent states can show maximal a&m?.
ture squeezing at this distance [13, 14]. It is worth mentioning that the phase mmcmm&ia
in CPOS is very close to the phase squeezing of the mathematically ooum_wn:na&.,wv.
proximating phase optimized state of Summy and Pegg (SPPOS). For examp e Yop
mean photon number {N) = 10 the phase variances are (A®%)cpos = 0.126589
Abmvmvm ppos = 0.126487. The difference is less than one thousandth. ;
The Wigner quasiprobability function of CPOS can be easily obtained:

Wi(a) = nwlmm_n_».\%m (=B | YN | B)e?PTa=Po") =
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Fig. 2. shows the topological picture of the Wigner function of the CPOS with 23 =

10. It can be clearly seen that the Wigner function has a drop-like shape stréfched
along the positive real semiaxis ensuring small phase variance. v

In conclusion, we have shown that phase optimized quantum states of light can be

engineered by superposition of small number of coherent states. " .
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