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The propagation of light in a lossless quadratic medium is studied using z-dependent
perturbation theory in the Heisenberg picture. Cubic behaviour of the fundamen-
tal mode in the case of phase mismatch is characterized. A contrast between a
nonperiodic progression and the unreduced behaviour is provided in the framework
of the Floquet theory.

1. Introduction

The study of propagation of light in the second-order nonlinear medium began with
the second-harmonic generation. To achieve a considerable efficiency of this process,
' the phase-matching condition was assumed. The quantum optics, which considers the
modes at frequencies w;, wg = 2wy, hesitated to generalize for the phase mismatch. Not
even the paper [1], which has considered the phase mismatch, does use the replacement
wj = ck; explicitly, avoiding so a violation of the frequency condition. It seems that the
quantum-field approach may introduce a more convenient language than the coupled
oscillators [2-4]. In this paper we describe the optical system in the familiar Heisenberg
picture and solve the equations of motion by a perturbation method, which is, of course,
in the phase-matching case, quite old-fashioned. But in the phase mismatch case our
modification of this method provides interesting results. To obtain a contrast between
a trend and oscillations of the statistics, we apply the Floquet theory [5] to this model
in the framework of the perturbation theory.

2. Propagation in second-order nonlinear medium

.F this paper we assume two coupled modes of radiation propagating along the z-axis
In the lossless quadratic medium. These modes have the frequencies wy, wy = 2w; and
are described by the annihilation operators ai(z’), d2(z') and the creation operators
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a,(2), ay(z') with 2’ = 2,0 in the Heisenberg and the Schrédinger picture, respectively
We consider the input port at z = 0. We use a modified Hamiltonjan formalism wit]
the generator of spatial progression &‘

G(') = Go(2') + Gine(#'),

where .
2
Go(z') =k > kjal(")a;(=),
i=1

with k; > 0 being wave vectors, k; ~ %L, ¢ is the speed of light, and

Giae(7') = hlg"al*(2")an(2') + Hec]

with ¢ being coupling constant.
previous term.

In the Heisenberg picture we introduce the slowly varying operators \ﬁ. (2), = 1,2

and in the Schrédinger picture a “slowly varying” state operator pin¢(2) is appropriate
which can be unified in the following form

Here H.c. denotes the Hermitian conjugate of the

BE) =G ep(ikie), pun(s") = exp(— 5" Gole Do) exp(E2Golz), (8

where 2" = ¢

G(z,7') = Gine(2, 2}, Gine(2,7') = m?.\mm?\v\wi\v exp(iAk z) + H.c), | A&

where the phase mismatch Ak = ky — 2k;.

The slowly varying field operators ov&w_, nr
commutation relations .,

[4i(2), Al =1, j=1,2, [A1(2), Az(2)] = [Ai(2), A} (2)) = b

Adopting the Heisenberg picture and using (6) and the scheme

45 = 14,621, =12,

we derive the equations of motion

d . s i B - . d .
&’NAZNV = i2g b?&\»u (2) exp(iAk z), ﬁmm?v

igA2(2) exp(—iAk z). Amv :

We assume the initial conditions

A1 (2)]s=0 = A1(0), Ay(2)]sz0 = 4y(0). )

o 5 ..w
mv .:.m%ﬁ.Q-.: 0&. thnmﬁwh Q:&~ N‘nmﬁ =D=~=.~Qm.~ 1t A4
€. mw N

Cubic

. i« linear
iclassical equations (8) are nonlinear, the quantum theory is linea
:m‘m - -
o oﬂanﬂa solution to (8) and (9) is described as "
Ai(2) = UH(2)4; (00 (2),

ression operator is the solution to the initial problem
g

Alt
in principle an

i TO

here the unitary p . , , w

' 4 b(2) = LU(2)G(z,2), U(@)lemo = 1. (11)
dz h
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3, j= 12
m.En\w:s+2,:.;>§+N:§Ei mod Ja, j=1,2, (12)
i(2) =
ot i (0)A . = 2K15(2)[-241 (0) A} (0)+ A} (0) A (0)],
z,.:ﬁfvuwBANE:?Es,%sxbrNvLN;,A )] , A , ! C,“ -
(Ak,2) = Ka()A2(0), 2an(Bk, 2) = 4Ku ()AL O A(0)4:0)+ 3 2
N@n» ,Z2) = A2 2 )
’ —iAk z) — 1j,
" Ki(z) = Mtﬁ:? 2) - 1], mxsnlwﬁwi Ak 2) - 1]
2 1 iAkz) - 1]},
ute) = P {5+ Gagrwia 9 - 1}
z iAkz)—1]}. (14)
Ka(z) = ETTID\»+AD~SL@§VAISD»NV :M

ideal C'.
. A — B belongs to the 1 ]
. = ns that the difference A der in
.Hrw/%onmroz _\p ¥ %hm“ﬂ m\‘rww“ﬂ?mn% progression operator U (2) up to second or
e have also o

m 1 i ith the

Th b i i iodically driven system wi :
Hamiltonian of perio ex o

= i ao um)M :m%MOnmmwv@“Moow”Mewa U A‘mﬂv can serve for the definition of the unitary

perio Ak" € O A

operator s

bument) = [0 (55)] (15)

iodic. According to the Floquet theory 3]

Here the subscript :oav.nm. stands for nonper
there exists a decomposition 2 Ak z) mod J3 (16)
N s - . z s
M:Nv - @.:o:vEANvalANV“ Q=o=v_...ANV =14z .:waon_v!A
where N

T (1)
Pianonpri(Bk 2) = ilglP £ AT OV A3(0), /O A (O]
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Here QE;NV isa mngio&o unitary operator. The occurrence of the 858:38@95
be expected as another description of cascading second-order nonlinearities (7, 28
the unitary operator Upri(2) can be determined up to second order in z. ‘

3. Cubic behaviour of the fundamental mode

m
- . ¥a m..wwM Y
To illustrate the squeezing properties of the fundamental mode, we concentrate om”

the principal squeezing variance [8]

(AQP(2)") = 1+ 2((Ad ()ALl (2)) — [(Ads (2)))]). y
We have investigated this quantity for initial coherent states [€1)[€2), &1 € [2, 10], mN"rr,
the coupling constant g = 1, the phase mismatch Ak = —150, and the interaction
lengths z € [0,0.1]. Applying the Floquet theory, we have found that the constructed
nonperiodic behaviour exhibits squeezing when the assumption for the second-harmorije
generation is fulfilled, i.e. |61 > [¢,]. The amount of squeezing increases with the
increasing initial number of coherent photons. But this tendency should not be derived
from the depletion of the fundamental mode, because this is degraded by the phase
mismatch. This behaviour is due rather to the phase mismatch itself than to'the
fundamental mode depletion. The oscillations contribute to the squeezing when £, x £,
Le. when the trend is absent, but they also deteriorate the squeezing, when the trend
is present. .
Studying the phase properties of the states generated according to the Schrodinger
picture [¢), |¢(z)) = Q:N:D:@Y we resort to the argument of the mean complex
amplitude arg(A;(z)) = Im(In{4, (2))). For the above choice of parameters and start-
ing with the Floquet theory, we find again that a phase shift in the counterclockwise
direction occurs, but this shift is not present for £ ~ &;. In the unreduced progression
there is a phase shift, which collapses and revives repeatedly. Unlike the squeezing
analysis, the oscillations attenuate with increasing £;. The phase shift is due only: to
the phase-mismatch itself, not to the fundamental mode depletion, and this observation
has led to the discovery of the cubic or Kerr-like behaviour in this situation [7]. "
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