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We study the quantum properties of the phase difference. We propose a general
procedure to obtain the probability distribution for the phase difference for a broad
class of phase approaches. Its properties are discussed.

1. Introduction

The main effort in the study of the phase in quantum optics has been devoted to
the absolute phase. The failure of the polar decomposition of the amplitude operator
for a one-mode field to give a unitary operator exponential of the phase has allowed the
introduction of different and interesting quantum descriptions for this variable [1].

From a practical point of view, it seems that any observation of the phase must be
relative to the phase of a reference system. Therefore, the most proper way to deal with
the phase should be as a phase difference.

To take advantage of this fact, we can focus on the phase difference variable and
try to define a phase-difference operator without any previous assumption about the
description of the absolute phase. We have followed this procedure showing that the
polar decomposition of a two-mode field allows the introduction of a unitary operator
exponential of the phase difference [2].

Otherwise, we can also describe the phase difference in terms of previous approaches
defining the absolute phases for the two modes. Here we follow this last approach noting
the main coincidences and differences with the results of the polar decomposition.
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P(¢5) = tr[pA;(¢;)].
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extended Hilbert space, including negative number states, the subspaces Mo are.not
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3. Conclusions

We have shown that the commutation or compatibility of the phase difference with
the total photon number is a requirement fulfilled by a broad class of phase approaches,

But we can also note that this fact, directly or implicitly, demands a discrete character

for the phase difference. The number of allowed values grows with the total photon

mall n and becomes a contin-
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ions obtained with the phase-
for the two-mode case. The
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