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In the tomographical reconstruction of the density matrix a set of pattern functions
has to be averaged with respect to the measured data. We discuss the evaluation
of the pattern functions in the Fock basis and give an algorithm to calculate them.
The effect of the inefficient detectors can be compensated by numerical deconvo-
lution, which we separate from the measuring and reconstructing processes. The
compensation is possible in general only if the losses do not exceed the critical
value of 50%.

1. Introduction

Photon statistics plays an important role in describing the properties of light. The
photon—number distribution of a single mode of the radiation field can show interesting
features for nonclassical light, such as the Schleich-Wheeler oscillations of squeezed
states [1]. The precise measurement of the photon statistics, however, is a nontrivial
task [2]. Inefficient detectors and other losses attenuate the signal and beyond that
cause extra noise, smearing out the subtle details.

In recent experiments homodyne tomography was used to reconstruct the Wigner
function [3]. The tomographycal scheme can also be applied directly to the density
matrix [4,5]. We discuss the possibility of reconstructing the photon statistics in this
scheme. The density matrix elements in a given basis are obtained by averaging a set of
pattern functions with respect to the measured quadrature distributions [5]. One way
to calculate the pattern functions in the Fock basis is the use of recursion relations,
which are, unfortunately, instable for the large photon numbers. Another, nonrecursive
method can avoid the direct evaluation of the pattern functions. Here the measured data
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are integrated with simple wei

ght functions and a linear combination of such mznamnm_w.
yields the matrix element. ~

The effect of losses can be compensated physically by preamplification
merically by deconvolution. In Ref.[5] the deconvolution was achieved by u
peaked pattern functions. We treat here the compensation separately,

sing more
as a second ,m_x.wv,«
nsformation, de_
scribing the effect of the inefficiencies, can be inverted [7). The deconvolution Process ;
always convergent if the overall efficiency is larger than the critical value w For smaller
efficiences, however, the statistical errors are amplified and therefore the compensatiop -
is possible only in some special cases

2. Density matrix reconstruction in the Fock basis

In a homodyne experiment the measured quantities are rotated quadratures zg Srmno,,
the rotation angle 8 is defined by the phase difference of the signal and the local oscillaZ
tor. According to the tomographycal scheme a set of pattern functions [5] F,,,, (z4,0) is

averaged with respect to the measured distributions in order to get the matrix elements

T 00 )
(nlplm) = \ \ Frum(zs, 6)we (v0)dzydd W
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The phase dependence of the pattern functions is trivial
Nu‘a\w:AH? %v = @NUT.Tu - 3&&\.:3 A&.mv 3 AMV

where the one variable Jam(z¢) functions are defined by

Fom(ze) = 5= [ mlexli(s - so)imyiciac.

3

The evaluation of the Jam{z4) functions, however, leads to numerical difficulties. The

recursive method is instable in certain regions because the difference of large E:dcoaﬂ

occurs in it. We define here a method, where the pattern functions have not to be

evaluated explicitly. The integral in (3) can be expanded and after some calculation

Jam(z) can be expressed as a linear combination of simple weight functions
oo

Jam(z) = an::@i?.s (z), z(z)=Nz* exp(~z?). Ab

=0

mmno\,\mnm:mmmo:rngsmzamso: m@oeo~..>\ﬂ Qﬁ_vl and pom =0 or 1 if n —m'is
even or odd, respectively. For the @nmy coefficients a closed form can be moczm .

n
- 1
Gt = — 2 9Pum 2 tyt) 3 ) ot i L
g v=0 Vi (n = v)i(m —n 4 W[ g0 11 gy ;
This expansion offers an elegant way for the averaging. Exchanging the summation and

the integration, one can first calculate the integrals with a number of weight functions

Q:S.o&:omamm »530:?05mzmnro:nrm:nmmn noE_&nmnmozo:rm integrals with the
@nmi coefficients yields the matrix elements. ,
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3. Compensating the effect of losses

flect of inefficient detectors and other _Omm.mm can be taken into account iy“_:w

Lo M 1. A fictitous beam splitter is placed in front of an homodyne appar b

mmB_u_.m Bﬁ_u M ﬁ ctors and its transparence is set to be equal 8. the w<mnm= detector

2:&. e m.HMo signal density matrix fsig is transformed m:a,E_xom i_o.r the vacuum

man_mmwzm. the E:Woa port. The properties of the resulting pmeqs density matrix are
jo en ;

ﬂ.rmm thMM_WmﬂMMMMMMW_G equivalent models exist to describe the beam-splitter trans-

evi

i 1 d
tion [8]. Using normally ordered products a simple rule connects the signal an
forma ‘

_dmw.mcﬂmnm values LHA#: ~m A@v

n
A@? a =10 % (G gl454) -

meas Mmeas . )
i i i hange of the indices sig — meas
i e invariant to the simultaneous exc : .
o m@:m&_wwm %Em suggests that the inversion of the eamammo_.awﬁo.: can _.uo @ogm,_\.ma
e :_UIM.HNSH.H n by n71. Another way for the mathematical description is Mo %:w m—sM
Mm mw om ”rmo %omE-mv:nnoum are also models for damping processes [8]. We intro
0 w - .
formal dissipation process with the master equation

d _1 (2apa’ — atap — pata) . (7)
d 2 "
The formally introduced time ¢ is related to the transmittance or with other words to

the efficiency by e (8)

z 1w . ain
Running the process backwards we get from pmeas the original ,ig. This means ag
fnby -l . ]
the Mxﬂwﬂ_ﬂmﬂwﬂh mMmMomﬁ the simple recipe for the ooEw.msmmSoP o&o:__wnm ﬁrﬂ ﬁmmm
mozzmﬁos for the density matrix elements in a m?mc. basis and nr.@w rep mmw: Ns.cﬂ g7t
In Fock basis this yields the inversion of the generalized Bernoulli transfo

S —3(natn)) k| Prmeas Iy + k)
(mlpsglni) = 7 2 (s + Ml P

k=0
1

' 3 k
ny+k =H._.wv_ lev . (9)
m ny n
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The existence of such an inversion formula may be surprizing, :wh ﬂg”_n:_mm Wmo MHM ”MH e LM@.
issipation i i ible process. The losses, ,
dissipation is regarded as an irreversi have
Moomv ME%MMM Mm%&mmuom character and therefore they can vo noﬁwmsmmnm& wMMSa rM !
nrmmﬁmﬁ—mo_ wovmomm converges. Analyzing the structure of the inversion QWW we mu_ hat
: o

the &m,mwwv:a diagonals are transformed separately. If one io:__&&rrm maMWmNﬁ&mwmwaw_m

photon statistics, represented by the main diagonals, the knowledge o

is not necessary.

W e es Firs he inversion always converges if ]
e discuss now three different cases. 1T nu t 1 TS1! 1 Y 0 g
ex = this c i 1 decreasin B
€ itical value o L as in his case the power series 18 a reasing one The
ceeds the critic ]
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procedure, in general, cannot be carried out. Taking the thermal distribut

ion’
example we find that the inversion converges provided the efficiency is above the

Walyy
7> WA — wvv where 7 denotes the mean photon number of the signal distrib

ution;
This condition is always fulfilled for 7 < L. The finiteness of the statistica ‘értorg

needs a stronger condition, and it can be proved that the critical value for this'jg
N = (34 va. We note that there are also other errors eg. the experimenty]
uncertainty of 9 itself, which are amplified the if § < 3 adding extra noise to the resylt,
To summarize, we have shown that homodyne tomography is an appropriate too
for the indirect measurement of the photon statistics. The losses in the Emm.m..EF.m
Process can be compensated by numerical deconvolution, provided the overall efficiency
exceeds the critical value 1 htis interesting to note that 1 is the critical attenuation
[9] in a damping process, where the Wigner function of an initially pure m-photon state
becomes entirely positive. 5
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