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The evolution of the optical Schrédinger-cat state in a coupled two-dimensional
oscillator is presented by means of the Wigner distribution function. It is shown
how the quantum interference collapses and revivals during the exchange between
the modes.

Recently much attention has been paid to the study of the Hamiltonian

u
H= w > Ww + se:w_ + Qq1p2 — g2P1)- E
n=1,2

This Hamiltonian can describe the motion of an electron in a constant magnetic field
provided w = Q, the optical directional coupler [1], a vibrating and rotating molecule
with two degrees of freedom, radiation field in a cavity with moving mirror [2]. The
accidental degeneracy of the Hamiltonian (1) was investigated in [3]. Nother’s theorem
was applied to get the symmetry Lie algebra of the system.

The systems mentioned above can be considered as two-dimensional harmonic os-
cillators with a coupling. The coupling mixes the initial states. It is an interesting
question how one of the field mode affects the other one during the time evolution. It
is convenient to choose such an initial state which is a direct product of a classical and
nonclassical state. Testing in some way the classicality /nonclassicality of the emerging
states we can gain some inside into the nature of the coupling.

The coherent states have features as classical as possible. On the other hand even
the most simple discrete superpositions of coherent states can realize quantum fields
with nonclassical properties due to the quantum interference [4]. The most simple
nonclassical states are the even and odd optical Schrodinger-cat states

| o, £) = Ni(| o)t | —a)). (2)

In this paper we investigate the »interaction” of a Schrodinger-cat state and the
vacuum state. To this end we derive the time dependent characteristic function and
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Fig.1. The variance of the field quadra-
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ture operators r; = ai +@a;,i = 1,2. The
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Wigner distribution of the field. The variances of the field quadratures are determined
by means of the derivatives of the characteristic function. The plots of the Wigner:
distributions visualize the evolution of the initial states. ,

To find the time dependent characteristic function we introduce the photon creation

al and annihilation a operators in the usual manner: ¢, = /h/2m&(a, + aHv ‘an

fhire
Pn =1t ma;&\w?w— — @n). The Hamiltonian (1) reads i

H= mEnME + asnwnm + mwb??m - anv (3

gt
in the new variables, where w = /&2 + Q2. The Heisenberg equation of motion of th
annihilation operators are :

da .
Mﬂ-wl = —wWa; — Qﬂw,
da .
|M&&Im = —way + bnﬂ.
The solution of these equations can be written in the form
a3 (t) = {a1(0) cos(Qt) — a2(0) sin(Qt)}e =™,
a3(t) = {a2(0) cos(Qt) + a; (0) sin(Q) e~ ¢,

where a,(0) denote the annihilation operator at ¢ = 0.
The characteristic function of a two-mode field is defined by [5]

i . ;
x(m,7) = Tr{ge"1 (e=n ic%&,sni Gy,

where we show explicitly the time dependence of the photon operators. Let us suppose
that a Schrodinger-cat state is the input of the 1st mode and the vacuum state of the:
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Fig. 2. The Wigner distribution function associated  with m_rm :m:owmﬁ. mnmnm
(1/AN)(| @)+ | —a))® | vac). Picture a and b show the contours of the Wigner func %\H.ﬂm a
¢{ =0 in the mode 1 and 2 correspondingly. Picture a and b show the contours of .nrm igner
functions at t = 0.5 in the mode 1 and 2 correspondingly. It can _um.. seen that the anlmnmuﬁm
pattern of the input state in the mode 1 deteriorates and the Schrodinger-cat state “flows’ to

the mode 2.

2nd. Substituting (2) and (5) into (6) we find the characteristic function

x(n,7) = .NH\I?aS.la.E+4=.|4.: 4 gmmm TR Moy
-
mﬂ.elw_a_nmai..*:.ifﬁ..+4.= + i 2o’ gmam’ —n*m=n® -y ")
m = acos(Q)e ™t n = asin(Qt)e " ()

To characterize the states in the modes we calculate the variance of the m&&.acwmnw.
ture operators z; = a + af and ¥ = S.TL —a). The variances can ?.w expressed mz.amn.:um
of the mean values of the normally ordered product of the field creation wc&. mﬁ:_r;mﬁo:
operators. One can readily find these quantities by means of the characteristic function

(5]

i (®)
Y =y=0=

mdimﬁld*:v,xg M=y .

To calculate the mean values in the other mode one have to take the derivatives with

respect to .

(al™ap) =
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In fig. 1 we show the variances of the position operators. The solid line oQ;..w%oa&U
to the 1st mode while the dashed line to the 2nd. Here @ = 2, w = 27/1, Q) = 2 /19,
It is clearly seen that after a quarter of the period T = 27/Q the initial states of the
modes will be exactly exchanged. Between the two limiting time moments the stateg’
of the modes will be the mixture of the vacuum and the Schrddinger-cat state. The
plots can be considered as the visibility of the quantum interference fringes between the
coherent states of the Schrodinger-cat state. At ¢ = 0 the visibility is maximal in .U_wm‘
lst mode manifesting the presence of quantum interference. At the same time there js
no interference in the other mode since the input of that mode is the vacuum. During
the time evolution of the system the visibility in the 1st mode disappears but bedaine
larger in the other mode. At t = 2x/Q the visibility is maximal in the 2nd mode m.um 0
in the 1st mode. Then this process takes place in the opposite direction.

The Wigner function associated with a state is suitable to visualize the deterioration
of quantum interference of the state. The Wigner distributions of the modes 1 and 2
are

2 2
S\HA&V - s.u Aalm_sli_ +mlm_a+3_ +
ip—2 2 _9 2_ " . _ 2 —ig—2 2 _9 2 . . _ 2
¢id=2lal” =2 (lel”~m*ztma* —|m|?) | o=i¢=2al? g~2(={*+m* s-ma* ~{m]?)

S\NAQV = %A@lu_tlws_n + QIN_Q-T#_U +
¢id=2lal’ =2y’ ~n"y+ny" ~Inl?) 4 g=iv=2lal? (=2(s[*+n"y—ny"~In|?)

T =1+ 122,y = Y1 + iy,

where z; and y; are the canonical variables associated with the modes (here the E&oom
1 and 2 refer to the position and momentum rather than the modes).

Figure 2.a and 2.b shows the contour of the Wigner functions at ¢ = 0, (the mwmnoB
is the same as in fig. 1). In figure 2.c and 2.d we show the Wigner functions at an ES?
mediate time moment. It can be seen clearly, that the interference fringes deteriorates
in the 1st mode and the state in the 2nd mode becomes quadrature squeezed.
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