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In this paper we investigate a system of two three-level atoms strongly interacting
with a coherent driving field and two damped quantised cavity modes a and b via a
radiative cascade. Upon adiabatic elimination of one of these modes the dynamics
can lead to a strong entanglement between the internal states of the two atoms.
Choosing appropriate operating conditions the two-atom system will preferentially
occupy a symmetrical linear combination of internal states. As a consequence the
two-atom system behaves very much like a single atom with correspondingly larger
dipole-moments, i.e., a superradiant two-atom system.

1. Introduction

One of the fundamental building blocks of standard laser theory is the assumption
of statistical independence of the individual atoms making up the gain medium. The
socalled independent atom model neglects the correlations that can build up between
atoms due to their common interaction with a quantised light field inside a resonator.
A certain randomness in coupling strength arising from the thermal nature of a gaseous
gain medium or a solid state suffices to constantly decorrelate the atoms. In a differ-
ent guise this is better known as the private bath assumption. Assuming a low-density
medium and a width of the position distribution larger than a wavelength of the emitted
light each atom may be viewed as coupled to its own reservoir all of which are statisti-
cally independent. Spontaneous decay will thus take place independently in each atom.
This randomization thus froms the physical basis for the independent atom model.

The situation is clearly different for the case of a microlaser. Such a device consists
of only very few atoms whose positions are fixed and known to a certain degree as
would be the case for trapped ions or a doped fibre placed in the evanescent field of a
microsphere. Lately, collective effects have become a topical issue in quantum optics in
Connection with interesting mechanical light effects [1-3]. Microlasers tie in well with
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this trend as they are ideally suited for developing an understanding as to how ato,
interact via a quantised mode [4]. o

Recently, there has been renewed interest in finding a superradiant laser source [5
a device which thrives upon strong correlations between individual atoms [6]. In ;
attempt to mimick the behaviour of many well correlated atoms Horak and ooéo%@%ﬁ
have investigated whether some of the predictions derived from the semiclassica] mode]
in Ref. [5] can also be obtained from a fully quantum one-atom model with regca]
dipole-moment. While some features could be reproduced, the overall issue of whet

In this paper we present a fully quantum two-atom model of a cascade microlagé
We investigate if an atom-atom coupling mediated through a strongly damped aiid

transition. By a comparision with a noncollective version of our model we will try ¢
assess the importance of atom-atom entanglement for the lasing process. 5

2. Motivation

It is clear that an ensemble of initially uncorrelated atoms will only display cooper-
ative behaviour if there is a means available through which they can interact with each -
other. In the well known case of superfluorescence [6] such a means is the free electro-.;
magnetic field. Suppose now we were interested in constructing a device that generates
spontaneously emitted superradiant fluorescence pulses. Clearly, the 3@5850% of .
our atoms having to be confined to less than a coherence length (> wavelength) of the

generated radiation will see only very few atoms vm;woﬁmammnnrmoozooﬁémammwmou.

2 10
process.

It thus remains to explore the utility of other schemes which could omg_u:mmxm@.
herence between the individual atoms. Haake et al have suggested {5] to utilise a
single mode of an optical resonator instead of the whole free electromagnetic mm_m,.,um.wo
strength of the atom-atom interaction could be strongly enhanced by the mbmmmm@n.ﬁﬁ
resonator which can be extremely large. Such a device would offer the ﬁOmm:um:ﬁ&,wm
tailor the coherence to some extent by manipulating the decay rate and the ammocmnnm
frequency of the cavity. Furthermore, the periodic spatial mode structure of a aam.wimwon
allows us to separate the atoms by macroscopic distances while still Emmsamm:,im.harn
coherence of the interaction. It seems pausible that a single strongly damped resonator
mode can lead to a substantia) dipole-dipole coupling between atoms. The single Eo&%
can be adiabatically eliminated by assuming a short autocorrelation time of mem.w.rwmn
on the tirnescales relevant for the atoms. This procedure is similar to what is :o.mﬁ.mmw
done to remove the reservoir degrees ;. :
“system”-variables. We conclude that for two two-level atoms a single strongly mmn%mﬂm
and coupled mode should be as suited to introduce coherence as are the many Smuww._«,
coupled modes of the free electromagnetic field. It is, however, not totally mimmmg.
forward to see whether the same arguments also apply to a more complicated level
configuration which is what we are going to address in the remainder of this paper.
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Fig.1. Energy level diagram of the uth atom. The system is damped through spontaneous
m.‘mhz”n relaxation as well as through the coupling to the cavity mnwmmm a and b. Note that the
transition form 0 to 2 should be regarded as a two-photon transition.

3. Model

Let us extend the single-atom cascade laser model m:?wa:om& in W.mm..E ﬁ.o a two-atom
model. The Hamiltonian (in units of %) for the interaction of two %mn_smc_m.rwzm mﬁ_oq._m
with two quantised modes a, b of an optical resonator and a oo.rmnmi m.:S:m fie & is
of standard form. As usual, we work in a rotating frame, hence introducing detunings
and the following interaction picture Hamiltonian

Hy = H,+ Hy+ Hpg, (1)
M 3
Hy = Agala+ ) (Apohy + [ghota+ Hel + oty + Hel ), (2)
p=1
H, = Dvﬁ@ =+ G%Qwov -+ m.o._, va

where A, = w, +w1 —wy (the detuning from two-photon resonance _uoﬁsdmu levels 0 w:n&
1), Ay = wy—w1, and Ap = wy—wy. Notice that U%.m:wmmmoznﬁ_:m the oo:m_im.nosmnm@mﬂm
s, 95, and g, we mean to denote their vwmmao.m:o %@m:@m:am on the position o le
atoms. We assume Hp to contain the dynamics mooos.;:p‘m mo_q nrw m%mnt-nmmonﬁw:
interaction. A graphical illustration of our model system is given in Fig. 1. In a R.m_-_mm
System the life time of the atoms in a state other than the m.,no.:cm mm.mao as well as the
Storage time of photons inside the resonator will be limited v.% E.mmﬁw_u._o:. We ZEmQ turn
to a quantum stochastic formulation of the system m«swﬁ.:_om in Mi:or we regard our
System as coupled to various reservoirs whose back-action induces _:mﬁnm_zo U.-.Ooommmm
TnmSBmsm from Hg in Eq. (1)]. This is accomplished EOm.a no:<9:m=2.x m;.rmn Y
Master equation techniques or by using Itd6 quantum stochastic om_n:jc.m which is more
onvenient for numerical simulations. Assuming spontaneous decay into modes other
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collective model: noncollective mode]: |

2

E.m.m. Collective vs. noncollective two-atom model. Instead of being coupled to a single Eo

b in the :o.uno=mn9<m model each atom couples to its own mode b,.. Any correlations betwee

the atoms in the noncollective model can only be due to their interaction with the laser mod
a.

Ay

. ) LG

than ﬁ“rm two cavity modes to take place independently in each atom we find the following _

equation for any system operator X 3 _.,

dX = —i[X,Hldt - (dL, + dLy) X, O

S.rmam. we have split off the damping part of mode b and arranged it in a mmvm&&
Liouvillian d£,. We find 1

doX = ky({X, 076} — 2 Xb)dt — V2wy(dB(1)[X, ] - dB,[X, b1]),

AL, X dLaX+ 3 3 A,E:qmvﬁqumkqﬁ&l

u=12 0<icy<2

— VT3 (dBY(1)[X, 0h] - dBi; ,(1)(X. &3,

l

H,rmgamm aisaomnlvmomi@ anm%éw:mpronmaom 2vi; respresent the rates of spon-
taneous decay from level j to level ;. e

4. Adiabatic elimination

Eq. (4) proves especially useful for purposes such as adiabatic elimination of gm,ﬁww_w :

e

Ewam b an approach useful in trying to understand the way in which correlation ‘can
build up between the atoms. An adiabatic model facilitates understanding by removifig
one parameter thereby greatly simplifying the mathematical treatment. It also allows.
for a comparison with a quast independent-atom model in which the mode b is Hmvwmhmm ,
by f<o. independent ones b; and by, as illustrated in Fig. 2. Both models lead to3
relaxation out of state |1,) at a rate % = 2lgl 2o/ (k2 + A7) The collective m&mvwmwn
3 ,.,M,m.

By system we mean to denote the Hilbert space which such an operator is assumed to owmnwen,?.
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model, however, contains an extra exchange term. It is due to our ignorance as to
which atom a photon escaping from the cavity was aB:;m.m E. In the case o.m a finite
detuning Ap between mode b and the corresponding atomic line we also obtain a beat
term between states |13,05) and [0, 15). In our theoretical model these oxorwwmo terms
can be used as toggle buttons with which we can switch on or off .25 correlating effect
of the fast mode b. This will allow us to easily identify the collective effects.

Assuming «» and Ay to be large and g} such that v/ as introduced above is of
comparable size with the other system parameters we may eliminate the mode &. It
remains to find the adiabatic counterpart of Eq. (4). We now require an operator of our
reduced system to have a vanishing commutator with b and b, whereas any commutator
involving atomic coherence operators or creation and annihilation operators of mode
a will in general be nonzero. The complete adiabatic system dynamics are thus aptly
described by the following equation

K % v v
dX = =X, Hldt +dL,X — o2 +@ 27 20 2 9h 0T (X, otooti b — 208X ok, ) dt +
b b h v
s.Dw ]
t &.TDmMM:U.SwSV [X, 07o00:]dt +
2k 3 .
- Aau +o>mv Mﬁkéwﬁh&&m+_.&r&u Qmﬁ&m&u {7
b b u

with (dBdB') = dt and all other combinations zero. Parts of Eq. (7) can be accomo-
dated in a modified Hamiltonian, which is defined by H, — H, + V.. The remaining
terms can be integrated into a modified Liouvillian complemented by. a term dL.. The
dipole-dipole potential 4 V, is given by

Dw :... t
Vs —— M M VX, elyohy] 8
¢ am Dm — Z 9,95 [ 10901] (8)

The addition to the Liouvillian can now be obtained from the remaining terms in Eq. (7).
The appearance of an effective potential (or alternatively an energy level shift) can be
exploited to selectively pump symmetrical and antisymmetrical linear combinations of
states as the shift will tend to remove any degeneracies.

It is a pleasant feature of the adiabatic model that we may find families of states
labelled by an integer n which are closed under the coherent system dynamics. The
incoherent dynamics solely cause spontaneous transitions between adjacent families. In
Fig. 3 we depict one such family of states F,, where n stands for the number of photons
in mode @ when both atoms are in their ground states |0 >. We realize that the pump
dynamics (represented by Hp) and the mode dynamics (H,) give rise to fymmetrical
_oo_azm transitions between the states within a family F,,. Transitions from Fn to Friq
occur through a spontaneous transition of an atom in level 1 to level 0 or by a collective
transition mediated by the fast mode 4. Similarly, downward transitions can only occur

*Note that Ve is effectively proportional to products of the dipole-moments of our atoms.
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Fig.3. Schematical re i i .
) Presentation of the couplings introd X
dynamics between the individual states of a mwﬂm_%m F, ueed b the coherent B B

a__.m A h:nﬁ ﬁnonmmmmmonncwoa_zvgimm:w&mhmba families. Since the driving field is assumed
assical, mvozagmo.:m decay from level 2 to level 0 does not lead out of F, Rt

'

via Mvoimumozm emission on the lasing transition or by loss of a photon from the _mmmm_..
M.Ho e a. mvw:nmcoocm processes between levels 0 and 2 do not lead out of a family. A
lagrammatic representation of the various jump processes is m?ﬁ:zﬁm» ._

5. Results

Let us now proceed with a discussion of the laser mode intensity and statistics

mvnwwsmm from the two models shown in Fig. 2. We may expect that at least in the:
imit of a weak laser field our noncollective model will yield the same results as a one-

atom model with the standard rescal; i i i of

. . ng assumptions (i.e., a si ionality of,
the Emmzm:&\ to the number of atoms). e o oally o,ﬁ
be a significant increase of the mean i

Clearly, an indication of superradiance will then’, .
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Fig.5a. Mean number of laser photons {(a'a) as a function of the coherent pump field 9p-
b. Mandel Q-Parameter vs. gp. The parameters are (all in units of g.) v» = 1.8, k. = 0.1,
Y01 = 0.3, and 112 = 702 = 0.01. Curve (a) was obtained from the collective two-atom model,
curve (b) from the noncollective two-atom model. Curve (c) represents a one-atom model with
rescaled dipole-coupling constant go = v/2ga.

5.1. The influence of pumping

In Fig. 5a we depict the steady state mean number of laser photons vs. the coherent
pump strength |g,|.

We realize that given sufficiently weak pumping there is nearly no difference between
the predictions for (ata) from a noncollective two-atom model and a rescaled one-
atom theory. Clearly, as soon as saturation effects become important there are more
substantial discrepancies. We also find that the collective model predicts a larger photon
number than the noncollective one this being an indication of the beneficial influence
of the mode b. The effect, however, appears to be fairly small except for around zero
pumping, as illustrated by the inset in Fig. 5a. The ratio of the two photon numbers
approaches a value of roughly 1.7 in the limit of g, tending to zero.

It is also interesting to have a look at photon number fluctuations for which the
intracavity Mandel Q-parameter is a measure, Q = ({(a'a)?) — (a'a)?)/(ata) — 1. We
realise from Fig. 5b that the number fluctuations are smaller in the noncollective model
except for very weak coherent pumping, cf. the inset in Fig. 5b. This can be explained
by recalling that in the collective model there are long lived antisymmetrical two-atom
states which do not contribute to the gain. This gives rise to a broadening of the photon
number distribution. In the limit of weak pumping the pumping cycle is slower than
the life-time of the antisymmetrical states and the broadening will disappear.
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5.2. Two-atom gray states and spontaneous decay

) ST
It is obvious that spontaneous emission plays a tremendously important role in ouf
two-atom system. Independent mvougnmo:masmmmmoanm:am8 mmooﬁmFSarmmaoEm

nteracting with the light fields in unison. What complicates the
in our idealized model the

6. Conclusions

In brief our findings coul
an auxiliary cavity field, i.e.
is more efficient than 1

d be summarized as follows:
» mode b, is that collecive rec
n the independent atom model.

the main benefit of using
ycling to the ground state
As a result we have found-
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Appendix: Symmetrical and antisymmetrical states

i ical and an
It is useful to separate the state space of the two atoms :;.o a m%BMsmMMom a
antisymmetrical part. To this end we will introduce new coupling constan

1

M @v
Jo = MA%M +@Wv_ he = MA.QQ - .QQVM A

with b In a similar vein we may now introduce the following Schrodinger
1 @ = a,o,p.

coherence operators

H & 10
.m.&”q_w‘._-o.wh; and \»QHQQIQQJ (0]

J ? Hw:m ::@:Gm —L—N\ﬁ a .Hmw.. nes-Cummings-¢ pe GO_.:U——.Z ~UOH$®0= ﬁrm atoms W\:h—
. > I - y O m y 4 m
a —~mrﬂ :@ mﬁ* can —u@ @X—Uﬁmwmma as HTO sum O* two OOSRH—UCSO:mA Muom. OX@B—U—W we ﬁ.—:& mOn
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the coupling to the laser mode a:

Ho=7 (ghona+H) = (S, + hoAl,)a + He. (g
# 3

We realise that for almost equal coupling constants g¥, h, is small and mbamv.‘.BSnE.
cal states couple only weakly to the light fields. Antisymmetrical two-atom states ape
however, populated by spontaneous emission which we assume to take place Fmovau..
dently in each atom. We may understand this by recalling that any coherence operator
may be written as an equally weighted sum of operators A and S. This is importang
insofar as even in the limit of equal coupling constants it does not suffice to considey
only symmetrical two-atom states. Even small spontaneous rates will in this system
give rise to what has been referred to as symmetry breaking.
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