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We derive an analytical expression for the mean number of successive clicks of
the same kind in one-atom-maser experiments.

In one-atom-maser (OAM) measurements [1] the only reproducible experimental
data concern the statistical properties of the atom-detector clicks. Of special interest
is the mean number of successive clicks of the same kind because this quantity is easily
accessible by experiment. In the past, this quantity has been computed with the aid of
a Monte-Carlo method [2]. It is the objective of the present contribution to derive an
analytical expression for this mean number.

In OAM experiments, the atom enters the resonator in the upper one of the two
Rydberg states of the maser transition, interacts with the photon field it encounters,
and is then probed in which one of two orthogonal states, |A) or |B), the atom emerged
from the cavity. These final states can be either pure Rydberg states themselves or
their coherent superpositions depending on the specific experimental setup.

Let us consider an arbitrary sequence of events of two kinds: the clicks of the |A)
and |B) detectors. It does not matter at all whether we are dealing with random events
or with ones that are strongly correlated.

We denote the probability for having exactly n events of one kind between two
successive events of the other kind by p, with n = 0,1,2,3,.... For each count of n
events of one kind there are n — 1 counts of zero events of the other kind, so that the

sum rule
o

p=3 (n—1)p. (1)

n=1

holds. We combine it with the normalization condition "7, p, = 1, to arrive at the

statement
(s o)

M:E:Hﬂ. (2)
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Fig.1. Mean number 7 of successive detector clicks of the same kind in the phase sensitive

setup of Ref. [2] vs ¢ for different detector efficiencies. The pump rate is 8.33 atoms per cavity

decay time. The curves are for detector efficiencies of p = 100% (solid Line) and p = 10% (short

dashed line). (a) The results of a Monte Carlo simulation. (b) Analytical results produced by
f

tinls

getting n events in succession? The way of counting is different here because 7 cannot

mn:m_NmSmo_.oo:nmE:Enmmmozm..H:m probabilities P, are thus normalized @nnp&ﬁw .
to 5°%°

difference between the probabilities p, and P,, so that

P — Pn _ _Pn
" MUMMHM Pm 1-— Po

relates them to each other.
The quantity we are interested in is 71, the average number of successive events

the same kind,
o3
= MU npb,.
n=1
As an immediate consequence of (3) and (2) this number is given by

1
— . (5)
1-po

=&

S
Il

so that we simply need to calculate Po, that is the probability that there are no events
of one kind between two successive events of the other kind. 2

Let us now calculate the probability pg, and consequently the mean number #,

for OAM experiments. Here we shall make extensive use of the methods, results and -

notations of Ref. [3]. We treat the case of “two successive A clicks with no B clicks

in between” in detail, the reverse case is handled by exchanging the labels A and

B consistently. For simplicity we assume that the detector efficiencies are the m@ﬁm“

Pa =pp =p. o
The a priori rates for the clicks of the |[A) and |B) detectors are

Ta = rptr{A4p59)} rg = rptr {Bp(59)} TA + 7B = rp, (6)

Let us now ask a slightly different question. How large are the probabilities P, ».ow ;

n=1 Pn = 1. Except for discarding the n = ¢ possibility, there is no essential
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1 i . [3]. The probability that the first click is of type
«h the symbols introduced in Ref. | r :
M_W given by the relative rate ra/(ra +rp) = tr {4 P50}, After this first A click the

photont state 1s reduced to e “
pa(0) = A

Until the next click happens this state evolves according to (see Eq. (2.26) of Ref. [31)
n

_ exp (LP) 1) pa(0)
Pl = e (E0T 1) pa (0]

(8)

with the Liouville operator
LP =L+ (1-p)r(A+B-1), (9)

where £ describes the free decay of the photon field inside the resonator. The mooosm
term in eq. (9) accounts for the change in the wroﬁo: state ow.:mma by :z&.maooﬁm_u
atoms. The probability for having an A click .m: time ﬂ.. -t + h.: is ﬁv.mwmw.vao given by
rpdttr {Apa(t)}, and the probability for having no click of either kind in the mean
time is exp (—rpt). Putting things together we have the result

Po rp \8 dte™ "t tr {A exp (L)1) A S} + (4 © B
0

- 1 IM*.N‘&W AKA TaNQIhAE:|~NwEA%MVM. AHOV

According to eq. (5), the mean number of successive OAM detector clicks of the same
kind is therefore given by

fi = T@Q {Alrp— h@:L&Em&LL (11)

which is the central result of the paper. .
In the situation of very low detector efficiencies, that is 0 < p < 1, the formula (11)

reduces to
=)
fruncor = [2tr {4 p } b {Bp5S)] (12)

To be more specific, we consider the phase sensitive setup o,m the OAM mem::.WmMMm
Proposed in Ref. [2], which has been extensively ¢mma H.o study phase Eovml.m:.wm Om e
cavity field. In this setup the atom crosses a classical microwave field after G.n:::m Hoqﬁ_
the cavity and before reaching the detectors. The classical microwave field is HmmoMmM
With the maser transition and effects 7/2 pulse. As a result, the detectors Jmﬁoa_ to
coherent superpositions of the atomic states rather than to the mmmﬁmm themse ves mmr_.m
the standard OAM experiments. The linear operators A and B in eq. (11) are in thi
Case given by

sin (¢ Vaal) !

. ¥
Mb - W cos (¢ <@9$H:4flv p |cos (p Vaal) F af Vaa® (13)
P aa
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where ¢ is accumulated Rabi angle, @ and a' are the photon annihilation and onmwmo.n
operators. The diagonality of P55 (ala) supplies tr {ApS9)Y = tr {Bpls9)y o /2
and, therefore, the value Runcor = 2. e

For the phase sensitive setup discussed above, @ has been computed 3812% _m
Ref. [2] by means of a Monte Carlo simulation that produced estimates for the probg,
bilities P,,. These results are reproduced in Fig. 1(a), which shows 7 as a function of
 for p = 100% and 10%. The uncorrelated value fiuncor = 2 is also indicated in' ‘thiig
figure. We observe that the detector clicks are bunched for almost the en
of the plot; antibunching is seen only around 0 =21 =4.44.

In Fig. 1(b) we plot 7 of eq. (11) for the same parameters that were used in the Monte
Carlo simulation of Fig. I{a). We observe perfect agreement between the Numerica]
results and the analytical answer. ;

In conclusion we presented an analytical method for calculating the mean number
of successive clicks of the same kind in one-atom-maser experiments. The expression we
find is simple and can be evaluated for arbitrary detector efficiencies. We have applied
the result to the phase sensitive setup of one-atom-maser experiments [1,2]. :
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