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By shifting the parity operator in phase space, we obtain a class of operators,
the Wigner operators, whose expectation value is equal to the Wigner function.
By introducing a trace-class extension of this operator and its integral represen-
tation we find, that the Q- and P-functions are also expectation values of certain
generalized parity operators.

1. Introduction

It is well known, that the Wigner function defined as
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Wiap) = = [dalg =215+ )=, (1)
is suitable to represent the state of the system in classical phase space if we calculate
the expectation value of a symmetrically ordered operator [1], [2], [3].
Looking at the definition of the Wigner function, we can notice, that its value in
the origin is proportional to the expectation value of the parity operator Py:
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and that the proportionality factor consists of universal constants.

In the following we shall show, that the value of the Wigner function at any point
of the phase space can be related to the expectation value of an operator in a similar
manner, which therefore can be given the name Wigner operator. We note that in 4]
an experiment has been described to measure the parity of an optical field mode i. e.
the value of the Wigner function in one special point, namely in the origin.
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2. The shifted parity and the Wigner function

The Wigner operator is actually a class of operators, depending on the arguments ¢ E&
p- It is the shifted parity operator, which reflects states with respect to the Phase spage
point specified by its arguments. To realise this transformation we shift the state to the
origin, reflect it by the parity and shift it back again to its initial position. That is, we
apply the D(q,p)PoD~1(q, p) operator, where D(q,p) = e!ldP=79)/% j5 the displacemeng
operator. In order to get precise correspondence with the Wigner function as stateq

the Introduction, we define the Wigner operator including the factor -L.:

in
7Th-" i

i ! ¢,p)PoaD™ (g, p). _@

w =—D

(9,p) = —D(

Statement: In any state the expectation value of the Wigner operator corresponding

to any fixed point in phase space is identical to the value of the Wigner function of that
particular state in that specified point.

Proof: Let us represent the physical state by the j density operator. Then
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The inverse of the displacement, operator effects the elements of the coordinate basis as

D™ (go,po) | ) = eore/hipos/hig _ g0y @
and by adjoining a similar formula, one can obtain the expression for ASUE? Po)- Since

Polz — go) = |go — z) and (y — 0l90 — z) = 8(y — (290 — z)) we arrive at
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In the following instead of ¢ and p we shall use the annihilation and creation op- '
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displacement operator takes the form h..,
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(the third formula is its normally ordered form) and we can write the Wigner ommnmpmo_.
as

W(a) = %b@@b-;&.

) Ll
We note that using the Wigner operator it is simple to verify the known fact that

the Wigner function cannot be measured in the sense that its values at different points

olf

correspond to incompatible physical quantities, To see this, the commutator of aMo ;
Wigner operators at different values of the argument has to be calculated. This equ ‘m.

zero if and only if the arguments are identical.
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Any complete set of vectors, which have a definite parity with respect of the .E..m.ymm
space point «, is an eigenstate basis of the Wigner operator W(a). One such possibility
is the set of the displaced number states:

| n,a) = D(a) | n). (8)

As it can be easily verified with the help of definition (7), these mgﬁmm_mam ;mﬂm.ﬂmmsmaﬁmm
of the corresponding Wigner operator W(a) with the cigenvalues —= or =} according
to whether n is even or odd, respectively.

In the following we shall need the expansion of the displaced number states in the
number state basis. Using (6) we can write | n, «) as follows:
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The scalar product {m | n, a) can be expressed with the associated Laguerre polynomials

1$(z) [5]:

emlal®/2(_qryn=m [mIp{n=m) 1012y ifm < p,

(mn,e)= 2 (m-n); 9 . (10)
el [Zgm=n, [BLLY (le}®) if m > n.
3. Trace-class extension and integral representation
The parity and therefore the Wigner operator are not trace-class operators:
o0
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which is clearly not convergent. We can however introduce Smhm.-c_mmm operators, which
can be brought arbitrarly close to the parity operator by changing a parameter. o
One of the simplest possibilities to generalize § oo ((—1)" to a convergent series is
the substitution of —1 by a real number A, with |A| < 1. Then the sum of the series
“o..o A™ obtained this way is Hlmnx and this tends to w if A goes to —1. H.rm sum of the
generalized serics will not depend on A, if we divide it by its sum. We include also a

factor w to be in accord with the limit mentioned above. Thus we would like to find

Some operators depending on the parameter A which have the trace 1523720 A" A
~ Possible choice is the operator P(A):

N 1-2X
PO) [n) = 2520 | n) (12)
 defineq by its effect on the elements of the number state basis. .
With the help of P()) it is straightforward to generalize the Wigner operator as
1 -

Wi, A) = QE&E»ET& (13)
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In the following we calculate the expectation value of the generalized Wigner oc@ﬁﬁ.

i the state described by the density operator p. Since the displaced number states vam

are also the eigenstates of the generalized Wigner operator, we expand the trace op Em :
S {f

basis formed by them:

o0

n=0

o

Due to our extension introduced in (13) the operator &\AQKC is also Hilbest.

Schmidt. Therefore we can use the known fact that the displacement operators form

a basis in the space of Hilbert-Schmidt operators (similarly to the Fourier—basis of the
square integrable functions) [6], with the inversion formulae

F= [@eq0ne,  re =nEp ) (15)
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where f is square-integrable and its “Fourier—transform” ¥ is Hilbert-Schmidt. .

If we apply (15) to the generalized Wigner operator and expand the trace on the
displaced number states (8), we find that

wlg oY) = THD )W (0, 1) = goreof el 38 (16)

Using (15) we can write the integral representation W (a, A) as

1
2n2h

Wi(a,A) = \%m D(¢)er 35l +ag —a"e (17)
Taking the limit A - —1 4+ 0 in (17), the first term of the exponent vanishes, i.e.
the Wigner operator is essentially the Fourier—transform of the displacement operators.

i
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4. Quasiprobability density operators

By a suitable choice of the parameter A we can introduce operators, which have similar
relation with the P- and Q-function as the Wigner operator with the Wigner function.
Thus the generalized Wigner operator can be thought as a quasiprobability density
operator. : .

The P- and Q-functions represent the state of the system over the phase space in

the case of a normally and antinormally ordered operator, respectively. They are the
Fourier—transforms of the 5 ek

Xn () = Tr(pef® =€)y (g) = Ty(je—"aeta') (18)

characteristic functions for normal and antinormal ordering, respectively [7]. X
.et us substitute A = 0 in (14), then there remains only the Oth term in the sum,
all the others vanish:

1
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(W( X =0)), = (0] D(~a)pD(a) | 0) = Qa). (19

(Wi )y = 2o | Wl ) [ ma) = 52 S tma [ madk™. (1
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Thus, the expectation value of the generalized Wigner operator at A = 0 is proportional
to the Q—function. . .

It is well known, that the P—function of a pure state is singular in general, and it does
not exist as an ordinary function [8]. Thus we cannot expect, that in the convergence
interval of (14) for A we get the P—function. However, if we let A — —o0, we o.v?::
apart from the factor % the P—function of the corresponding state. Ho see a.?m, we
evaluate the expectation value of the generalized Wigner operator using its integral

representation (17). Taking into account (6) and (18), it is easy to show, that

W@,y = 5 [ 4% sy (Qertriel et —are (20)

If we let now A — —o0, the first term of the exponent vanishes as A = —oc0, so there
remains only the Fourier—transform of the characteristic function for normal ordering,
which is the P—function by definition.

Finally we illustrate the above connections by calculating the expectation value of
the generalized Wigner operator in the coherent state. . .

Let the state of an optical mode be the coherent state | 8). In this case the mm:.m;%
operator is pg =| #)(8 |, so the matrix element to be calculated in (14) is the following:

2o — Q 2n
(n,ac |y | my) = (8| m @) = ~leo? 2= AL )
After substitution into (14) we get:
(Wia,A))p = S=2cla-pl0-) (22)

27h

It is readily seen, that in the limits of X at 0 and —1 the (W{a, \))z is the well known Q-

and Wigner function of the coherent state, respectively, while as — —00, A&\MP A))p
tends to §(a — B) which is the P-function of the coherent state multiplied by TT
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