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We study the damping and amplification of a single-mode radiation field. We
define a generating function of this field and find its time-development in the case
of damping and amplification. We apply these results to three different fields, i.e.,
to the Gaussian state field (GSF) (a field with Gaussian Wigner function) and to
two generalizations of this GSF. The final result shows that the time-dependent
solution for the density matrix elements is given by the same function as initially,
with the only difference that the field parameters become time-dependent.

1. Master equations and their solutions

The dynamics of single-mode radiation field, interacting with a zero-temperature
reservoir in the Born-Markov approximation can be described by the following master
equation [1]

dp 1 ¥y

— = —[Hy, Iwan+la+ala+m“ 1

30 = oo Pl + 5 (2ap p—pata) (1)
where Hy = hw(ata + wv“ w is the resonant radiation frequency, and ¢ and at are the
annihilation and creation operators and v is the damping constant. Analogously, the
master equation for the perfect amplifier is given by

p 1 ¥

h A 4§ A

o = oA+
The corresponding density-matrix elements in the Fock basis satisfy, in the case of
damping, the differential equation

(2a*pa — aatp — paat). (2)

S mlp(0) ) = il ) (L) )~ L+ ) ol 1)

+1v/( F 1)(m+ 1) {m+ 1] p(t) [n + 1) 3)
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The analogous equation in the case of amplification reads as
g N . / il
i (o) In) = —iwm —n) {m| () In) = L (m+ 7+ 2) (m] p{t) |n)
+yvnm(m —1|p(t) [n — 1) . (4)

The above equations can be solved by using different methods and the solutions ape
well-known [2-5]. We would like to give a simplified treatment being similar to that
of Arnoldus [6]. From egs. (3) and (4), after some calculations, we obtain decoupled
equations for normally and antinormally ordered moments in the case of mwBE:m and
amplification, respectively ,;,

Gae) = [tk ~0) = 2064 Dl ), o

G0 = Gtk — 1)+ (6 + Ot () )

where the normally and antinormally ordered moments are given by

E+ )T R

3
Tz
i

((a*)*a) (t) = Trl(a* ) alp(t)] L+ bl p(t) Ik + by

(M
(U + B p(t) [k +h) .
(8

In both equations the moments for different & and { evolve independently. .The
solution for the damping is

i
g

(d'(a*)*) (t) = Trla!(a*)*p(1)] = M (k+1+ h)!

3
i
1]

mi () = T TRmlY,(0), %)
with hIa
Tn(t) = exp [(w—-2)¢], (10)

and that for the amplification is
3%;3 = ﬂwﬂMS%AS ) A:w
with
La(t) = exp [(iw + 1)) . (12)

It is convenient to express the density matrix elements by using the generating function.
By using the generating function 7

Gs(A1, A9, Ag;t) = Trlp(t){exp (A\1at + Aga — Aoata)},]

the density matrix elements can be expressed in terms of

(mlp(t)|n) = Tr(p(t)|n)(m])

1 a o 9 m
i Awﬂv wa/luv QZA\/T\/.}yo = HW&_\/HH\(HQ A“_.Av

m!n!
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d the ordered moments of annihilation and creation operators in terms of
an

mi, () = ({(a")*a'},) (1) = Trlp(t){(at)*d'}]
!
N A%V»A%ﬂv Ga(hy 220 = 03}y, 2,20 - (15)
1 2

The .m:_umolnﬁm s =1 (or N),s = —1 {or A) and s = 0 {or .S\v in egs. va&wﬁ de-
note the operator ordering: normal, antinormal and symmetrical (Weyl). :m+ wa nm W%
denotes the expectation value of the symmetrized mo.Eg of the operator {a%) a mm_
This product of k creation operators and ! annihilation operators can be oammmaa_z
(k+1)!/ (k") ways. The symmetrically (Weyl) ordered Eo.&:oﬁ of nrmmm OUMSSM, HM.
poted by {(a*)*a'}w, is just the average of all of these differently ordered products.
Eq. (14) has been obtained by making use of the relation (see e.g. {1])

[n) (m| = lim T MU WAI\/&:;J:?Q_ES (16)

d loying eq. (13). . . .
* %HW mMm. mﬁwvlﬁﬁmvv we obtain directly the Taylor series expansion of the generating

function - v,m;wil\/cv?

s 17
Ge(A1, A2, do3t) = MU gwﬁwiiuioﬁv (17)
J1.42,50=0
or
0 NI (1 - Ag)e
Gn(A1, A, 205) = . Ml AN A
J1,J2,:50=0
x /(1 +do)t (G2 + Jo)! (G2 + Jo| p(8) 1 + jo) - (18)
By employing eqs. (17) and (9) the relation for the damping follows:
Gn (A1, Ao, Ao t) = GN (], A5, Ag; 0), (19)
2
X (t) = Tn(t)As, A5(8) =T (0)Az, Xo(t) = [T ()] Ao (20)
Analogously, by using eq. (11) the relation for the amplification follows:
Ga(Ai, A2, host) = Ga(A}, X5, X3 0) 21)
1 2
A (t) = Ta®r, A5(t) = Tu() Az, Ao(t) = [La(t)]” Ao (22)

The results for the matrix elements in the case of damping read as

© 1 [(m+h)(nth)
mlpl) Iy = TROIF(OY oy i)
h=0
x (1= 10w F) " (m b1 p(0) In 4+ 1) (23)
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where we used eq. (19) along with eq. (14).

The treatment in the amplification case is similar, with the only difference
(21) m:n.EE be rewritten by using the normally ordered generating function @G 7
generating functions of the different order N and A the following relationship rw.amm,o

1
e [~k (1 = 20)7| GalAr, Ao, Aost),

L

GN (A1, Ag, Aost) =

where
s ;.
>_. S AL ; — ’
“_,l\/ov 1 Ourw. Aw.
The above equation can be obtained quite analogously as in paper (9], in Srmor,a.m_.m

relationship between G, and i i i
re ationsh and Gw has been found. By inserting eq. (21) into eq. Amav

-

1
Gn(A1, A9 i t) = - il A 6)
WO 2R3 t) = T exp [<A (1= 00)7 | Ga(0f, A A550), (o)
with

1=TalAs, Ay =T3(As, Af= [Ca(t)f Ao (27)
By using eq. (24) we can express G 4(0) in eq. (26) by Y
H i

G >\4 / ‘. - 1 =1 ‘ ‘
AN A K510 = T exp [ X4 (1-20) | G, 00, 0550), (28
where A! is defined by z
Al . ”
Hll!\/ml?; i=0,1,2. (29)

Finally, we get

1

O dadeit) = o ke (a0 -1) 7] G, 2 350), @0)

with :

‘ Ta(t ; * 2 ey
At) = %\/r Ay (t) = Wml:? (1) = _?%: Ao, E=1— Tl _?33 Xo-

. 31
In ovﬁ:::m eq. (31) we .:Emm use of eqs. (25), (27) and (29). By applying the H@%_oww
Mxnmnﬂo: (18) on both sides of eq. (30) (and additionally expanding the exponantial
:cnfo: on the rhs. of eq. (30) as well}, and using eq. {(14) we obtain the known
solutions for the density matrix elements in the case of the amplification

min(m,n)
mlp®) ) = T M Or "ty Y N_,_

h=0

X A_ﬂ\i&_,ul HV:AEIEEOV [n—h) . (32)

a2
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2. Initial fields

We apply the results in the preceding section to different initial fields: The Gaussian
state field (GSF) (i.e. single-mode radiation field with Gaussian Wigner function) and
iwo different generalisations of the GSF. The initial fields will be defined in the following.

We can write the initial density operator of the GSF in the form {9]

[XIEd

2
-2 1 i

p0) = (P=4lual -1) *expq{- o :
,\LL:S__ ,\Ll»_t\»_ -

(T

x |iala—ao)® +pn (a* —af)’ +7(a* —aj) (a—a0) + 2]} . (39)

The independent parameters of the GSF are given by the lower—order moments of
annihilation and creation operators a and a® at the initial time

(a)(0) =g, (a®)(0)= -2} +ej, (ata)(0)=r1—1+|a|. (34)

The initial states of the generalisation of the GSF are defined by the density opera-

tors [9]
(0) = Kb p(0)(a*)* (35)

p(0) = N(a*)" p(0)a™, (36)
where p(0) is the initial density operator of the GSF and A and A are the normalization

constants.
The generating function of the initial GSF

2
Gy (A1, A2, hot = 0) = @(s, ho) exp |yihi +mha — 3 Y A, | (37)
i,j=1
can be expressed as a sum over the Hermitian polynomials of two variables [9]:

oo my yMma
\/H ym

my! my!

HE | (21,22). (38)

G(A1, A2, 20;0) = B(s, %) Y

mi=0 my=0

The function ®(s, Ao) and the variables ¢ = (¢;;), ¥1, ¥2, 1 and o are functions of the
field parameters @q, fta, T, the ordering parameter s and Aq.

By applying the derivatives (14) and (15) to the generating function (38) we obtain
for the matrix elements and the ordered moments of the GSF the following results [9]:

(m|p(0)|n) = ——— B HE), (31, 25), (39)

min!

I _paad + ppa’ + (7 + §) |aof’

by = exp o 5
/\?..*.wvmlm__t\__w (T+5)* —4ual

; (40)
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miea(0) = ({(a*)*a'} ) (0) = BED (24(s), 24(s))
kiL
= W_ W S RU(=1)" 4 (ag)h=h=20 () [ — 51 (1) o h-
T e = (k — h — 2v)llhlwl(l — h = 2w)!
hyw = min(k - 2v,1 - 2uw) .

By using the moments of the GSF m; (0}, the moments of the generalisation of the -

GSF (35) and (36) can be written as [9]

N
S»+E+lov

43

S@AEAS ( v

Analogously, by using the density matrix elements of GSF the density matrix ele-
ments of the generalisation of the GSF [cf. (35) and (36)] take the form

(m] 5(0) fn) = /(M L+ L)l (m+ L] p(0) |n + L)

min! my’ ; (0) ' 54

. _ m!n! {m — M| p(0) |n — M) S
el = A = mie) 0 ™M
(m[p(0)|n) = 0, m<M or n<M. (45)

3. Dissipation in the case of different GSF’s

The initial moments of the GSF (given by (41)) inserted into the solution for the
moments (9) yield the simple result

3

mi(t) = mi1(0)] ag = aglt) (46)

Ha = pa(t)
T = 7(t)

Srmwmarmamaolmzamvm:mocﬂ U@wwgmamnQ?t?ﬂmv_ummasmm:o@. (41) are replaced‘by
the corresponding time-dependent parameters ”

20(t) = Ty (Hao, pa(t) =T (Upa, 7(t) = Cn(@) (r-4) + 1. (47)

Analogously, the time-dependent density matrix-elements of the GSF can be written
in the following form

Gl p(t) In) = (ml p(O) )] —, 1) - (48)

Ha — pea(t)
T = (1}

mg L (0) ),

A -
~ My (0) ‘
Sm;ov = M
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Analogously, for the generalisation of the GSF p it follows that

S\Q+§+h (0)

§2. t) = a aoft) (49)
ol S&BAS tm“ tMAQV
7. (%)
m+ LY (n + L) (m + L| p(0) |n + L)
(mlpt0) ) = /2 :N_M_ i my | (0) ag — ao(t) (50)
~ Ba = palt
T — 7(t)

where the time-dependent parameters are again given by eqs. (47) and p(0) is the
density operator of the GSF.

4. Amplification in the case of different GSF’s

In the case of the amplification by using eqs. (41) and (11) the time-dependent
moments of the GSF can be obtained:

mit (t) = mi,(0)] a0 — aq(t) (51)
ta = palt)
T = 7(t)
where ao(t) = Ty (t)ao, pat) = T4 (t)pa, 7() = [Ta(t)] (r+3) - i (52)

have to be used. Further, the time—dependent matrix-elements of the GSF can be
written in the following form

(mlo(0)1m) = (m1p(0) 1) g, aot) (53)
Ha = pa(t)
T 7(t)

Analogously, in the case of the amplification we get for the generalisation of the GSF j
the time-dependent moments and matrix-elements

mit (0)
P = T |0 anl) o
MM Ba — palt)
T = 7(t)
min! (m = M|p(0) |n — M) (55)
m|p(t) |n) = ma ag = aoft)
(28 1) =\ G =31 = 31 CEA PG
7T 7(t)

Where the time-dependent parameters are given by eq. (53) and p(0) is the density
Operator of the GSF.
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5. Conclusions g

We studied ‘the dissipation and amplification of a single-mode radiation field. 1
both cases, dissipation and amplification, the time-development of the corresponding
moments (normally or antinormally ordered) can be described by appropriate €Xponep.
tial functions. By using these results the time development of the generating functiop
has been calculated for any initial field state for both above mentioned cases. These
results have been applied for the description of the dynamics of the density matrix
elements and photon distributions for the GSF and its two generalizations. The final
result shows that the time~dependent solution for the density matrix elements is given
by the same function as initially, with the only difference that the field parameters
become time-dependent. ki
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