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In any multiport homodyne detection the characteristic functions of the (joint)
count distributions in the various output channels are proportional to the charac-
teristic function of the quantum state of the multimode signal field in the input
channels, provided that the local oscillators are sufficiently strong. To obtain the
characteristic function of the quantum state of an N -mode signal for all values of
its complex N arguments from the characteristic function of a joint count distribu-
tion, a one-to-one correspondence between 2N real variables in the two functions
is required. This may be achieved, for example, by a succession of phase-controlled
measurements of N-fold joint count distributions or by measuring a 2/N-fold joint
count distribution in an extended scheme where N input channels are unused.

1. Introduction

Information on phase-sensitive light properties can be obtained by means of homodyne
detection, where in the simplest case a signal-field mode whose properties are desired
to be observed and a strong local-oscillator mode are combined by a beam splitter. De-
tecting the superimposed light, field strengths of the signal-field mode can be measured
[1,2]. The effect of detection efficiencies has been analyzed [3] and various detection
schemes have been considered [4]. A detailed quantum analysis of balanced homodyne
four-port detection has been given with special emphasis on the properties of the local
oscillator, the detection efficiencies, and the relation between the measured difference-
count distributions and the field-strength distributions of the sigial-field mode [5,6].
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In particular, the feasibility of reconstructing the quantum state of a signal Bom
from the data measured in homodyne detection has been of increasing interest T.H:
Recently, experimental reconstruction of the quantum state of a radiation-field anmm
been performed by using optical homodyne tomography [12]. The Wigner function of the
signal mode has been reconstructed from the difference-count distributions Measyy
in balanced homodyne four-port detection using inverse Radon transformation, and: th
density matrix of the field has been obtained as the Fourier transform of the Smmm,
function. \

As we will see below, in any multiport homodyne detection the characteristic fupe:
tions of the joint count distributions in the various output channels become _uuowoﬁcn&
to the characteristic function of the quantum state of the multimode signal field in the
input channels when the local oscillators are sufficiently strong. Hence, by appropriate’
parameter variation, the characteristic function of the quantum state of a multimode
light field can directly be obtained from the characteristic functions of the Joint count
distributions measured in multiport homodyning. , -

2. The quantum state of light in terms of its characteristic function -

Let us consider a (correlated) N-mode radiation field, with the creation and destrue-
tion operators &. and a;, respectively, :

[a;,a].] = 855, j,i'=1,2,...,N. (1)

Using standard quantum mechanics, the state of the field is described in terms of the

density operator §. Equivalently, the quantum state can be described by its character-
istic function [13]

N

®({a;}) = Tr{eD({a;}) } = ﬁ? exp| > AS il —a; m:v : @

j=1
sovioed
It is well known that ®({a;}) and ¢ are uniquely related to each other, i.e., ei.ﬁ.ﬁ
yields all knowable information on the quantum state of the N-mode nwmwmao:,;,mm,_m
(see, e.g., [13]). In particular; knowing the characteristic function $({e;}), the mmamma&.
operator in any representation can be obtained. -

2.1. Coherent-state representations
Using the (non-orthogonal and overcomplete) coherent states

N
Hasp =TTles),  ajley) = ajlay),

j=1

an R representation can be defined by means of the operator expansion [14]

N

0= o [l @) R(03) A8 exp| = 4 (sl +15,1) [l @)

=1
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where N , )
R({ar). (85)) = HasH 1B exp | 5 S (lo] +§._-;

i

:s related to the characteristic function ®({x;}) as
i

N
R({e}, {8;}) = exp T > (log P +18; > 455 0= Bjof) E

j=1

N
X \awie:séiixi- 1" P — (o4 85) 25 + (o5 +55) ) 6)
T Jj=1
The coherent states are frequently used to define mmwwmmwﬁwawsm.ma e.m:zm of pseu-
dodistributions that are formally similar to classical probability distributions. Expand-
ing the density operator as [15]

o \ {d%a;} P({as}; ) 8({as — a3} =), (1)

where

2
ey —a)ss) = |Wz.\€$&b:@:% D (sl + oy 85 — i Bi) |, (8)
e j=1

s-parametrized pseudodistributions

o)) = oby [ otmNesn[ L Gl +es —eis)| @

are introduced [P({a;}; 1)= P({e;}), P function; ﬁio&r 0)=W{a;}), /Mﬂmmﬂm.mﬁ?wﬁ-
tion; P({e;};—-1) HALQQE_@IQLVMQQQL.Y. Q ?:Q._o&. For s> -1t o. _mo ﬂr:ﬂ
tions P({a;};s) do not necessarily exist as positive ?noro,zm. Moreover, .mOa 5> ey
are not zoowmwwl—% well-behaved. In particular, the P function of nonclassical light may
be extremely singular. . .
The EoWHEm@ that may arise from singular behavior of the P function can be avoided

by using generalized P representations [13,16], such as

o3 1155
b= [(@aHa) PUes) ABD) Ty (10)

Here, the pseudodistribution

N
1 1 e Lla; 4611 11
P({as), (81)) = g exv| = 4 2 les = AP [ PLles +4)) ]
i=
always exists as a well-behaved positive function. Using m.m_..ﬁ:, EEH s = —1,
P({a;},{B;}) can easily be expressed in terms of the characteristic function ®({a;}).
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2.2 Orthonormal-basis representations
In the photon-number basis,
N
Hnih)y = [T Ing),  @layng) = njiny),
p=l
the density operator is given by
6= > ({nj}al{m;}) [{n;})({m;}|
{n;} {m;}

mvﬁwmmmm:marmvwonoz-::gvoumgammEnmnsm&arooormwmsﬂmamnmm, 23:@:33
can be related to the characteristic function ®({a;}) as s

({ns}lél{ms}) = \ {d28,} 0({8;}) K ({ns}, {m;}. 16;)),

where
] 1 N B
Kt} ms). 871 = S exo( = 1301557
Jj=1
o
B(ay)™ o exp(|a;[*+a; f; —a; 6) - (1)

a;=ot=0
I

Finally, let us represent ¢ in the basis of phase-parametrized field-strengths [17]

N ‘
F=3) Filp.), (16)
j=1 i

i

where
File,,) = Fa; + Fj &}, Fj=|Fjle*n.

Introducing the eigenkets of F

[{FhAen 1) = 11700,

ji=1

where the |F;, ﬁﬁ.v are the eigenkets of the single-mode operators .@Aﬁ? )

@gﬁﬁﬁuv‘.ﬁhuﬁgv ”.Nuu _.‘\.n.jmbﬁuvv

¢ may be represented in the form

o= [WFHIF) ) Aen eHF L Lon DI (o DT (o) €D
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where the density matrix elements can be obtained from the characteristic function
9233 as [9]
{FO+FOY A Nl F =7} len 1)
(2) = N
1 FVF; . s 1)
- du.1 @ lt;*@.%&%v Q.GA|~ “c..w.nﬁ ; 21
2n)N \A b} Q FZTE W T e

Note that the density-matrix elements of an N-mode field in a field-strength basis can
already be obtained from the characteristic function ®({a;}) by a single Fourier integral
per mode, which favors the use of this representation. Further, it should be pointed out
that when the field-strength distributions

EAAQ&.T Aﬁﬂ.wv = Aﬁ.ﬂuwvﬁﬁﬂim A.\\MT wau@v Awwv

are known for all values of the phases Pr, within 7 intervals, then all knowlable infor-

mation on the quantum state of the field is available [18].

3. Multiport homodyne detection

The characteristic function ®({a;}) of the quan- olfid™

tum state of an N-mode signal field can directly +»

be obtained from the characteristic functions A L _
of the count distributions measured in multi- mi Smw 4y
port homodyning. Let us suppose that the N
modes of the field under consideration can be
separated from each other so that each mode Qmm
can be used as an input-signal mode in a multi-
port linear device. In particular, to detect a field - H

that consists of modes of different frequencies w, ) A A

(r=1,..., R), we assume that the set of modes . ' Uo' @1 AN,

can be subdivided into R groups, N=%F N,

where the N, modes belonging to the rth group are equal in frequency. We further
assume that the coherent reference field consists of R modes of frequencies w, (r =
1,..., R), so that each group of the signal-field modes can be assigned to a local oscillator
(whose frequency is equal to the frequency of the modes of the group). This implies
a detection scheme, where a linear lossless 2(N + R)-port apparatus that consists of
R subdevices is used (cf. the figure). The N, signal modes of the rth group and the
associated local-oscillator mode are combined by the rth subdevice to give N,+1 output
modes. The N+ R output modes of all the subdevices fall on photodetectors and the
overall (N + R)-joint count distribution

r _ 1 (R R
1) = (o) e

can be measured.
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Since the rth subdevice is a linear lossless 2(N,+1)-port apparatus that trg
»+1 Input modes into N, +1 output modes, we may write

zmmonsn

N, +1

=Y v} (r=1,...,R),

ki=1

where ,Mi and 03 are the photon destruction operators of the input and output mog
respectively, and U, A? are unitary matrices,

Ny+1 Ny+1
M Q\va: \Mwwzv = MU Q\Mww AS:VTV = Sk
k=1 k=1

A n T _Q\Muw; ox_uﬁﬁmw; #0). Note that any discrete finite-dimensional unitary matrix

can be constructed in the laboratory using devices, such as beam splitters, phase mr_?o_.m
and mirrors {19].

3.1 The characteristic functions of the joint count distributions

From photodetection theory [20] it is well known that the characteristic ?:o?on o”.
the joint count distribution p( T\:SC

R N.4+1° Pl
2& Jv MU %QSWJV exp ~M aMJSMJ , Ge
(m{"} r=1 k=l
Is given by
) R Netl
(=) = (exp[ 30 30 (45 - 1) a0
r=1 k=1
Here &wl are the photon-number operators of the output modes, A

A0 = GO,

and SML are the detection efficiencies. The notation : : indicates normal order.

We now assume, that the (N, +1)th input mode in each subdevice (r=1,
prepared in a coherent state |a(")) (a(") I_Qs_msso ) with large value of |o(")] (st
local oscillators). To obtain the asymptotic behavior of the joint count nrmﬂ:wiuon
large values of |a{")], it is convenient to introduce scaled counts

(r) T.v
\E‘Ml _ my, IS _ kN, +L _QA : Awov .

) o))
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2 +1,r=1,...,R) w:m to consider the joint scaled count distribu-
t& M= T# M) _\Ec +;, v_ch +H_ _QS_ }). Its characteristic function

tion psc(1 M

Q 2&33 is easily proved to be related to € ? : as

$C

k
3 R N,41 . 2 o)1)
Q Q&ML )=Q exp I&MU MU _Q»ZZS_ [ ey o (30)
* . v_QT.V_ r=1 k=1

Combining Egs. (30) and (2 7) and following [4], we now expand in the resulting
oyvﬂmmm_os for bmnﬁa Jv the exponential m&@?&»v\zw |al)|] into a power series

:u?v_\g :Qé |}« 1) and omit terms of higher than second order in _a v_\gﬂ:_o:.:.
Z.mmn moﬁhm calculation we obtain [21], on keeping only the leading terms,

R N41 Nodl pr(o) f57(r)
4 Q?Ac?:v RGYRG!
Q({zM)) = expd =53 D | D G (24)"

=1 k' k=1 k=1 dw

S 112 Q)
X eXp wMuMU _NM._:_ Q:&s P Wv (31)

r=1ln=1
where N1 A V o
r T
N‘ml = MU ﬁ?t@f» Lo (32)
\ﬂ\'

In practice balanced homodyning is frequently preferred, because in this way the
classical excess noise of the local oscillators may be eliminated. Introducing N scaled
difference counts

Ul
pir) — abr) o LINeAL g?v (33)
Ik, l _Q.S _
ke No+1
(=1,...,k,—1,k,+1,..., N.+1), the characteristic function Sm%iﬁlz of the N-

fold joint scaled difference-count distribution Fanﬁpﬁwt can simply be obtained by
specification of Egs. (31) and (32) [21]:

Quae ({27}) = Quc({2}) for =), =0. (34)

We find that in any case the characteristic function of the count distribution is propor-
tional to the characteristic function of the quantum state of the N- szomm mmmv:@_ field. In
A r r

Particular, assuming (for simplicity) equal detection efficiencies =7, ' =n), from

Eqs. (34) and (31) [together with the relations (25)] we see that

R N,

SmanAARQJVV =exp| — t:

AT%GT:% vv {35)

r=1n=1

which reveals that in the case of perfect detection the characteristic function of the
N-fold joint scaled difference-count distribution is, for appropriately chosen arguments,
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nothing else than the characteristic function of the quantum state of the N-mode signa] :

field.

3.2 Reconstruction of the characteristic function of the quantum mnmem 0».
an N-mode signal field

To obtain the characteristic function of the quantum state of the signal moE sa
may invert Eqgs. (35) [or (31)] and (32), on recalling the relations (25),

R N,
. 2 .
®({A)}) = exp IMMMUM B | Qaae ({271),
r=1n=1
N, (r)
() _ U gir ") Vel
o = 3 |l sin (ol Ry bl D) )
n=1 Q:fi .

where, owing to the real quantities .ﬁlu the allowed values of Qmﬂ

(r) EV

=1 | explipl])) =
izp ’ explip

are restricted to those satisfying the conditions

v
AL

M Lo 63_08?%%5 ti%f%v = (38)

n

l=1,... ke —1,k.+1, L<a+r ﬁ =1,...,R). In particular, the N equations (38)
reveal that for given N—1 ratios _m _\_u V_ the N @rmwmm SS cannot be chosen ?mo—w

To obtain & ."m VC for arbitrary arguments, the B must of course be allowed 8
attain arbitrary complex values. This can be achieved by appropriately varying the
transformation matrices Q@: which implies (successive) measurement of a set of count

distributions, for example, by using phase shifters in the apparatus and varying N E_mmm
parameters from measurement to measurement.

To give a simple example, let us assume that

QAN = QA%\ mxwﬂﬁ&uvv AQA , real; ﬁmwiﬂov .

and introduce the notation @mn:a?J To?v: to explicitly indicate the &mvg&o:mW

the SS of the measured distributions and their characteristic functions. Making :mo of
Eqgs. (36) - (38), we easily obtain

®({A07}) = exp
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Hence, phase- controlled measurement of the N-fold joint difference-count distributions
for all values of the N phase parameters G (") within = intervals yields all knowable
information on the quantum state of an N-mode signal field.

The 2N-fold manifold of data necessary for a reconstruction of the quantum state of
an N-mode signal field may also be obtained including into the detection scheme unused
input ports, which of course introduce additional noise. For example, the characteristic
function of the quantum state of the signal field can be reconstructed from the 2N-fold
joint difference-count distribution measured in a 2(2N+R)-port detection scheme, with
N input ports being unused (i.e., N, input ports in the rth subdevice). mnam_mr%oném&
application of Eq. (36) to this case yields (N, —2N,)

R 2N, 2N, 9
o({8)}) = exp MUMU % exp MU S s Quac({z{7}) (41
r=1n=1 r=ln,=N,+1

2N, ul) = 1,.
.,2N,, vacuum inputs), and Egs. (37) and (38) now read as

(=1, k=L +1,. 2N, +1;n=1
2= No+1,

, Ny, signal inputs;

2N, r
2" =Y Ug e wam () _ ) SV (42)
[ QS Pin ~PiaN,+1 ﬁ ;
n=1 {2N,.+1

Aﬁﬁ lﬁmwvz at SAN |ﬁwlv
N,

=— S ol

ny=N,+1

M_ ?‘_.w

ns=1

(65 oD e o). (43)

We see that the values of the |8{7)| and ﬁmﬂv can indeed be chosen freely. The values

of the _QE_ and ﬁmﬂv are then determined by the conditions (43). Hence, any set of NV

complex values of the QS can be associated with 2N real values of the HM ") In other
words, there is a one-to-one correspondence between the 2N-fold joint difference-count
distribution and the quantum state of an N-mode signal field in a detection scheme
with N unused input channels. Note that other than vacuum reference fields could be
used.

When the detection efficiencies are less than unity, the inverse Gaussians in Egs. (36)
and (41) obviously correspond to a deconvolution in the Fourier space, and a very careful
consideration of the experimental inaccuracies is required.

4. Concluding remarks

Although at least one local oscillator per group of signal-field modes of equal fre-
qQuencies is needed to reconstruct the quantum state of a multimode signal field, in
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practice it may be advantageous to increase the number of local oscillators. For exam:
ple, introducing more than R subdevices of the type described, the dimensions of the

)

transformation matrices QA? are reduced. In particular, using N appropriate four-port
subdevices and mixing in each subdevice a signal mode with a local-oscillator mode,
the N-fold joint difference-count distributions measured is closely related to the j joint
field-strength distribution of the N-mode signal field. o
A decomposition of the detection scheme into more than R subschemes may. algg
be useful when the reconstruction of the quantum state of a signal field is desireq
to be performed through unused input ports as described in Sec. 3.2. For example,
using N appropriate eight-port subdevices and mixing in each subdevice a signal mode
with two vacuum modes and a local-oscillator mode, the 2N-fold joint difference-count
distribution measured is closely related to the @ function of the N-mode signal field.
Finally, it should be pointed out that the theory also applies when the numbers
of local oscillators assigned to each subdevice is increased (and the dimensions of the

)

transformation matrices Q_M_t are increased as well). Following Sec. 3., the characteristic
functions of the joint count distributions and the quantum state of the signal field can
be related to each other in a very similar way as is given there.
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