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Quantum phase properties of optical fields generated in nonlinear optical processes
are reviewed. Phase distributions obtained from the Hermitian phase formalism
of Pegg and Barnett and from the s-parametrized quasidistributions are used to
represent the phase of the field.

1. Introduction

h recent years, a significant progress has been achieved in clarifying the status of the
wantum mechanical phase operator, describing phase properties of optical fields in
erms of various phase distribution functions, and measuring phase dependent physical
juantities. So, although the quantum phase is still a subject of some controversy, we
an now say that, despite the existence of various different conceptions of phase, we are
n the way to a unified view and understanding of the quantum-optical phase.

In this review we are not going to give detailed account of different descriptions of
‘he quantum phase showing their similarities and differences. We shall rather concen-
rate on the description of quantum properties of real field states that are generated in
sarious nonlinear optical processes. Nonlinear optical phenomena are sources of optical
ields, statistical properties of which have been changed in a nontrivial way as a result
»f nonlinear transformation. Quantum phase properties are among those statistical
sroperties that undergo nonlinear changes, and fields generated in different nonlinear
jrocesses have different phase properties. With the existing now phase formalisms the
uantum phase properties of such fields can be studied in a systematic way, and quan-
itative comparisons between different quantum field states can be made. We shall
se the Pegg-Barnett (PB) phase formalism and. the phase formalism based on the
-parametrized quasidistribution functions to give several examples of quantum phase
{ [distributions and other phase characteristics associated with the particular one- and
Jtwo-mode field states.
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2. The Pegg-Barnett phase distribution

Pegg and Barnett (1, 2] (see also [3])
which is based on the observation that in
with the well-defined phase exist {4].
(¢ + 1)-dimensional Hilbert space H(°)
In this space they define a complete ort

introduced the Hermitian phase mommw:mﬁ
a finite-dimensional state space th

Thus they restrict the state space to
spanned by the number states [0), |1)

I .“.MQ Q.vw
honormal set of phase states by i

H (=4
On) = exp(inf,) |n), m=0,1,.. 0,
o) = Zog S explntia) o
where the values of 6, are given by -y
2rm : : '
0 = 6 \
o + P AMV

The value of ¢, is arbitrar
orthogonal phase states.

The PB Hermitian phase operator is defined as

y and defines a particular basis set of (c+1) mutually

& = A&Mv%m = ,Wuc? 10, ) (0]

The phase states ( 1) are eigenstates of
restricted to lie within a phase window
is to evaluate any observable of intere
the limit ¢ — oo,

Since the phase states (1) are orthonormal,
PB phase operator (3) can be written as

the phase operator (3) with the eigenvalues.fy;
between 6y and 6, +M:_.Nmuw. The PB prescription
st in the finite basis (1) and only after that take

.
(O |0m1) = Srnme, the kth power of the -

@w = M%w:_mivgi_.

m=0

As the Hermitian phase o

perator is defined, one can calculate the expectation valié
and variance of this o

perator for a given state of the field [f). Moreover, thé PB phasé.
formalism allows to introduce the continuous phase probability distribution that is'8:
representation of the quantum state of the field and describes ¢
the field in a very spectacular fashion.

The mean value of the
to the formulas

(f1®4l5)

I
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pasis can be written as ;
Cp = be™?,

. . - . .
:—® meOMﬁ hozcmm:.ms.u N\EQ Hvr(m—ﬁmr:v\ ﬂﬂ@uwmmumwh@dn way O_ OTCOm—:m ‘QO 18 to m%:_:_mA rize »__w
ﬁwwpm@ W =~QO$ W ~&~H H@Mﬁ@ﬁ& to Hrm U:N.m@ mD. Hw,:m means HTO n——0~00

o (8)
fo == o+ 1’

and after introducing new phase label
5 ©
t =m-— M )
the phase probability distribution becomes

ws.
w + w M ?LzoOOm T: IS = +tLv ﬁov
o+1 o+l n>k

k0N =

i istributi 10) is
ith 1 which goes in integer steps from Ia.\.m to o/2. m&zaa the distribution (10)
MWEQ.“QWO@_ in p, we immediately get, according to (8)-(10},

(F1belf) = ¢ b

i the choice of g as in (8)
; tial phase state with phase s
This result means that for a par erator with the phase .
: tion value of the phase op .
relates &_nmomw nrMM MwMMHM@”.M here that it is not quite nozowﬂ to a.mwm mmﬂommw”w“%wwwm_
oy MWVO_HOEMMM& from the decomposition of the state |f) EH nrwr_sw_“am.&aobmmosw_
o & ' i 1)-dimensional space. In the -di ! ¢
i ly them in the (¢ + 1) lized in this
Fock Uﬂm_m wnﬂmwm%ow ¢,, should be redefined as to .E.wwo the mnwm.o I MMHW‘_@ m”w gy
space the Maﬁ ¢ states in a finite-dimensional basis have been discuss Wm.vzmamm oo P
space. Oo. erent t al. [6]. However, if ¢ is taken so large ;mﬁn the pro m._omo”ﬁm
W.ﬂ and Z:mumﬁwsw mnm nammmzu_o the usc of the infinite basis expansion coe
or 1 approac glale, b b
‘to ¢ igible error and is justified. ! . cal states
- aomm_M mmwmhw Mowmnmew& in real experiments _um_ou.m, to the so vomn:m& MMWMM_MW .
(2 »H_,WEM MS.M Gefiedl s Lie ehates L manm.-mzo_.m% M_mzsmmwﬂwmuﬂMom MMszvm introduced.
e h states the continuous p .wmm ! oh
Wm?o“”o%ommw\.owo%““w mm (¢ +1)/2m, we can write the expectation value of the k&
ince the den ]

power of the phase operator as
fo+42m
\ dé 6* P(9), (12)

6o
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where the continuous-phase distribution P(6) = Ppp (8) is introduced by

P©O) = lim 2t 1m0

o—oc

and 6, has been replaced by the continuous-phase variable 4. If the state

number-state decomposition with the amplitudes ¢, then the PB phase dis

given by 2 tributiog

1 A4
PO = —— *> i g
(6) - 1+ 2Re MU CmCp exp[—i{m — n)4] } | CMW

m>n

and for fields being in mixed states de
generalizes to

kg

scribed by the density matrix j, formula G@,

e

1
P6) = 5-{1+2Re > pomnexp[—i(m—n)g] }

m>n

where = 7 i |
m,oﬁs—w_ mbmiﬁazw oAnﬁA_Hb%vsv_ m.wov the density matrix elements in the number state basis
any state it Lo oma_. e used for o..LQ.L&QOE of the PB phase distribution mo_.“
e S oxmznmﬂ_v ttudes ¢, or matrix elements Pmn, but despite the fact that
e m:BEm:oo » they can rarely be summed up into a closed form, and usually
e matic n E¢Mn be ﬁowm.onﬂmm to ?ﬁ the phase distribution. Such numerical
i &malvznmm” sm, ely applied in mn:&::m _.urmmm properties of optical fields. The
with the deneps Emalw Q.@m. CA.V or (15), is obviously 2m-periodic, and for all states
over the Zneie ot GMOBW_ in the number m.emﬂmm the phase distribution is uniform
ek sl vl p window. These are nondiagonal elements of the density matrix
¢ structure of the phase distribution. The PB distribution is VOmE«M

definite and normalized it i i
comn » and it is a good representation of the quantum state of the

?:Mw%n aﬂwm_wmwﬁ%cﬁoaw ?:nSocm such as Glauber-Sudarshan P function, <§mnn ,
vmnwsmawmaom :wm.%mwﬁw Q m.:z.nﬁoz are special examples of the more mo:mmm_., -
o mHoonm 1dis M_ utions introduced by Cahill and Glauber [7, 8. Such,
Do 21 wo_wmmm%ﬂ mﬁwo:m ow the quantum states in the complex plain, and the
tors. If such @:@&&mﬁmM:memwmmmwwﬁwmmwﬂ_zm Oﬂwro, mz% mr_:mioz rogt A vm..on,,mw
I rperiad: e oo ed over the “radial” variable, the no ized, -
moﬂ _MMMSAMS E%mo m.:mﬁ.__u:n._o:m are .oc.ﬁmmcmm [9]. In the Fock basis the mmm:_zzmﬁmm_,_nw&%
phase distribution is very similar to the PB phase distribution and is m?w:../mw._

[9]

w?v 1] = «_—l —i(m~n ;
(6) 5 {1 H2Re ) prne =m0 G g ) L (16)

m>n
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The difference is in the coefficients G®)(m, n) that appeared in (16), and which are

given by [9]
() e
)

QE?F:V =
(=0
N RIGE ===12 )

Formulas (16)- (17) allow for calculations of the s-parametrized phase distributions for
any state with known pn, and compare them to the PB phase distribution, for which
G®)(m,n) = 1. The phase distributions associated with particular quasiprobability dis-
tributions have been used in literature to describe phase properties of field states. For
example, the integrated Wigner function (s = 0) has been applied by Schleich, Horow-
icz and Varro [10] in their description of the phase probability distribution for a highly
squeezed states. The integrated Q-function (s = —1) has been used by Braunstein and
Caves [11] to describe phase properties of the generalized squeezed states. Eiselt and
Risken [12] have used the s-parametrized quasiprobability distributions to study prop-
erties of the Jaynes-Cummings model with cavity damping. In their approach, Eiselt
and Risken [12] have used the series expansions of the quasiprobability distribution

.functions, and they have found an expression relating the PB phase distribution to the

quasiprobability distributions in a form of the integral relation and applied it to the
Jaynes-Cummings model . Their formulas, however, do not work for s = —1, i.e. for
the Q-function. For some field states the phase distributions PG)(8) can be found in a
closed form via direct integrations.

The s-parametrized phase distributions are different from the PB phase distribution,
but in some cases the phase information carried by such distributions is basically the
same as that of the PB phase distribution. The coefficients G)(m, n) that multiply the
nondiagonal elements of the field density matrix prs., for s < —1 have values smaller
than unity, and the resulting phase distribution is broader than the PB distribution.
Such distributions can be associated with the noisy measurements of the phase distri-
bution [13]. We will show several examples of the different phase distributions that are

found for fields generated in nonlinear optical processes.

" 4. Phase properties of field states

Optical fields produced as a result of nonlinear transformation of the incoming field in
the nonlinear optical processes have their statistical properties changed with respect to
the original field. Quantum phase properties of the resulting field belong to this class.
Each quantum state of the field is characterized by its own phase properties which
are represented by the phase distribution of the state and/or by the values of mean
phase, variance, phase correlation, etc. Many different states of the field have been
studied from the point of view of their quantum phase properties (see the special issue
of Physica Scripta, vol. T48, 1993 and references therein). Here, we are going to give
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only few examples tlustrating the use of the PB and
to describe phase properties of optical fields. v}
First, we remark that for coherent states the PB phase distribution is given by A ).
with the coefficients ¢n being Poissonian weight factors, and the phase &m:mvcﬂou
obtained by performing the summations numerically. In contrast to this formula, ¢,
s-parametrized phase distribution for a coherent state can be obtained in a clog ;

[9] ed for

s-parametrized phase &mamcmomm

POIG) - \ W (a)la] dja|
= 57 XBl-(08 — X {exp(-X7) 4 VX (14 erf (X))
where
) ~ w i *
X = NAVQV - ~Im_Qo_oomA%l.%cvv C,WN

and X, = NEEOY ¥g is the phase of ag. Formula (18) is exact, it is wa-wmwmommm

positive definite and normalized, so it satisfies all requirements for the phase &mnmmz
:o:.goao,\mﬁmongc_m Cmv

has quite simple and transparent structure. For small
[aol, the first term in braces plays an essential role, and for o] = 0 we get uniform -
phase distribution. For large |ag|, the second term in the braces predominates, ..nE,_m if*
we replace erf(X) by the unity, we obtain the approximate asymptotic formula given :
by Schleich, Dowling, Horowicz and Varro (14] (for s = 0)

POG) =~ WFS_ cos(f ~ ¥g) exp[—2]ayg|? sin?(4 — Yo)],
which however, can be applied only for —r/2 < (0 —Yg) < 7/2. After :zowauwamﬁ,
(20) with respect to 0, the approximate formula for coherent states with _wmmﬁqﬁ,. 1
number of photons obtained by Barnett and Pegg [3] is recovered. The presence of t w
error function in (18) handles properly the phase behavior in the total range of phase
values —m < (§ — Yo) < m. This example shows clear advantage of the s-parametrized
phase distribution over the PB phase distribution from the point of view of om_niwa
simplicity as well as interpretation insight into the form of the distribution. It was shown
[9] that for large number of photons P(%)(8) is very close to the PB phase distribution,
but for small number of photons the P(=1)(4) is closer to the PB distribution. So,‘in
case of large photon numbers formula, (18) is a very good and simple approximation to
the PB formula (14). - i

Probably even more striking contrast between the analytical forms of .the
parametrized and PB phase distributions is seen for squeezed states, for which'%
-parametrized phase distribution has the form [9] ,

(s) _ 1 VAU )
S 27 (#— s)cos? @ + (u-1 ~ s)sin%4
x exp[—(X§ ~ X?)) {exp(=X?) + VoX (1 + erf( X))}

87

fie:

e .
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where 5 g/t — scosf (22)
_ (s) ) = 3 v
X = XY pl—s /\mztmvno%m;.?LIim:%m
and

po= e (23)

i d real) being the amplitude of the
; ing t ueezing parameter and ag Awm_mcﬁm . :
s:ww . Nm_oMWHMMMM; >_%~o:m: the variable X is slightly m_mmnm:w,, the ”zmmﬂ_wﬁcnﬁmﬂm
o e 1 - herent state. Formula is
1 the same as for the cohere
e ﬁﬂrwmmﬂ_mww_wpﬁwmﬂ _Mo. For g = 0 we have the result for m@:mmNmm AwoM:MJ
o _..Vom ropriate approximations one can easily reproduce the formula o Mm._mﬂmm . m
>mwﬂmorwvmono§oa and Varro {10] for a Emr_%.m@:m@ma state. .Hc o%:SmM._ n_mo:ﬁm °B
m_n se &,maivca._os require summations in (14) 5;7. rather noav:nﬂﬁm Huo_wom. ﬁivczo”
mﬂm&lo& calculations show [9] that, again, P{9)(8) is sharper than the is ion,
very similar shape.
ccemvmz_ﬂorhwmaw mM:mmNma states differ essentially from the two-mode mwcomuom mawMMM
ingle-
&mocmmmm extensively by Caves and Schumaker [15] . The w\w vrwmm ﬁ MMBMT_MHMw@mo
been applied by Barnett and Pegg [16], and Gantsog and Tanas [17] to study
tes.
i the two-mode squeezed vacuum sta . |
EoMﬂM_MMqM.mBoMm squeezed vacuum state is defined by applying the two-mode squeeze
operator S(r, ) on the two-mode vacuum, and is given by (18]

10,0)rgy = S(r,)I0,0)
(cosh )~ exp Amw._s tanhr ﬂmwv 10,0)

H

= (coshr)™! M (e¥¢ tanhr)" |n, n), (24)
n=0

w i < r < oo) is the

here a! and @w are the creation operators for Ew two modes, aﬁSnrm o :v_ N

mewozmﬁrH of squeezing, and ¢ (—7/2 < ¢ < m/2) is the phase (note , as
:

by /2 with ect to the usual choice of ¢). . ‘
’ ﬁ\rmmwmnanmm%»v after generalizing the PB formalism to the two-mode case, leads

in th
to the joint probability distribution for the phases §; and f; of the two modes in the
form [16]

~-1
P(6;,0,) = (4ncosh?r)~!(1+ tanh®r —2tanhrcos(6, +6)) ~.  (25)
1,02 = -

One important property of the two-mode squeezed vacuum, which is .moo@u?%nsmﬁwmw« Mw
that P(6,,6,) depends on the sum of the two @rwm.mm only. Integrating Mrr w o

one of nrw,wwmmmn gives the marginal phase distribution P(61) or P(f) for the phase 6,
or mw

P = .\ﬁ%?m&amw = P(f,) = o (26)

—
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which means that the

phases 6; and 8, of the individual modes are uniformly distribyg
This gives

, f the individual phases, we get the _urw.mo &mﬁlvc:or ?.: m.mEm_o vrmwm

difference > hase sum, with the properties of a single phase m_mn:mvcro:n e.g., the

.SENE.P ﬁ:me vHEm S.ms_m;mon however, requires some care with handling properly mrm

ws‘.vm:o%ow . hase values vwnwcmm the phase sum and difference have the 4mr-wide

ranges OF ¢ _o M Barnett w.nm Pegg [16] proposed a casting procedure to cast the new

range” wmawmﬁﬁmm .wq?iam window. As a result of this procedure we get the mod(2)
“”Hm.mmwwﬁlvcaos for the phase sum 6. in the form [16]

: -1
33
(@0 +80) =20, (b0, - By,) =0, R Paa(64) = (27 cosh?r) ! (1+ tanh” r — 2tanhrcos 0,) 7 _
So, the phase-sum operator is related to the
vacuum state (24).

The two-mode squeezed vacuum ha,

(@0,) = o+ \ 6:P(6:)d0, = (3p,) = o

and

. 7 : i i by [16
phase 2¢ defining the two-mode squéeyzdq where 0 is in the range — and 7. The phase sum variance is now given by [16]

thy

2
§ very specific phase properties: individual pha: ([A(Ds, + ®6,)D)2r = W + 4dilog(1 + tanh r) (34)
as well as the phase difference are random, and the only non-random phase is the pliags ) ,
sum. . ; . : . (32 d (34), have generally different values,
The variance of the phase-sum operator can be calculated according to the gene It is evident that the two variances, eqs. (32) and (34)
formula .

although the asymptotic values are the same. This means that the Swo. mmwnzﬁm_oohuﬂ

i ually well justified, must be interpreted with care. The original app o
w<r~_vo”ﬁw”m M%w example, in showing explicitly the intermode vrmmm.oomnw_m:oﬁ. e
o %Awiu hase &mazgmaos for the phase sum, on the oarﬂ rmmau is simpler in mw_QT
WMoum of mwo phase sum properties. The intermode ooﬁm_m.;_osm in this case are hidden
in the value of the phase sum variance and are not seen directly.

A_HDAAMV? + Mﬂ@ui&v = AADAWQLMV + AAbﬁmwvmv +2C1,

in terms of the individual phase variances AADAWS.L

?) and the phase correlation functiog
{correlation coefficient) ,

Ciy

M

A&?@mmv - A@m~VA@mnv. 4

E

.\\s$wa:$zsa$

_—n ~-7T

5. Conclusion

It

The above examples of the fields, which are Eai%. mw.:%_m“ were owoMMM to ﬁ%ﬂ“m
some essential points of the quantum phase mmmmzvsou of ovfoa.. fie M e have
shown the relation between the PB phase description and the .aomojvfoﬂ Wmﬂomv 0<<Eor
8-parametrized phase distributions. ‘Hro.:w mm. a general S_mﬁ._os mm<m= nw Awm pich
says that the s-parametrized phase distribution can be obtained from the p

The variances AADA@?,LNV are simply 72 /3 (because of

(26)), and the phase correlatior
function Cy, is equal to E:

. : ients
(tanh r)n+h distribution (15) by multiplying the field &ozm.;% matrix m_mamim. ﬁs.*_,u _uw. armmwommm_www
Ciz = —2(cosh r)~? MU e = —2dilog(1 — tanh r). Gl (m n) given by eq. (17). The calculation of the phase distribu _ozﬁ N
- i ) : - etri
g oS, beweyer, mumterical summabions: Tn foms & owmmmm mnmﬁm mwnwmﬂﬁmor m:o%m for
. . i . 3 1 O 3

This correlation function describes the correlation between the phases of the two .Eomw@ : Emn:vﬁﬁzm can be obtained by ﬂﬂMMaa_MMwWMMHMMW el

of the two-mode squeezed vacuum. The correlation is negative and asymptotically better Em_.mrﬁ into the structure o : opitical phencrem. thut e prodics sates
r teuds to infinity, approaches — 2 /3. The strong negative correlation between ‘the twQ ‘ There is a large variety of the nonlinear op

phases lowers the variance (29)
this variance tends to zero, wh
two phases becomes well define
finally takes the form

of the phase-sum operator. Asymptotically, for r =
ich means that for very large squeezing the sum o.m the
d (the two phases are locked). The phase sum varia

UMM
Ssl

with different phase properties. We just mention a few of them, the phase Uwowonwmeww
which are known, like Jaynes-Cummings model [19, 20, 21, 22, 23], anharmonic osci o
ode] [24, 25, 26, 27, 28], harmonics mozmnmnw.os [29, 30, 31], or &oéz&o:mﬂ.ﬁosﬁrmmm
33, 34, 35, 36]. The space available for this article does not allow for presentation

Phase properties, but more information can be found in our review article [37].
2

([A(Ds, + B5,)]%) nwwlﬁg%isia. ‘
The dependence of the Jjoint phase distribution (25) on the sum of the m:&?&:uw_w
phases suggests that, after the appropriate change of variables to the sum and theé;
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