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We show how the newly-developed quantum jump method for describing the dis-
sipative evolution of individual quantum systems in an open environment can be
employed to describe atomic fluorescence. This approach leads naturally to the
idea of “attractor states” to which systems tend to evolve.

1. Master Equation and Quantum Jump Approaches to Dissipation

The traditional way of treating dissipative coupling between a small system and a
large reservoir employs a linear Liouville master equation for the system reduced density
operator [1]. The two major assumptions in this approach are first a Born Approxima-
tion and second a Markov Approximation. Having traced out the states of the reservoir
the evolution of the system reduced density operator is governed by the master equation
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is a general form of relaxation Liouvillian. The Lindblad operators Cy [2] represent the
effect of coupling the system to the reservoir.

In recent years an alternative way to describe the evolution of dissipative systems
has been developed [3, 4, 5, 6, 9]. In contrast to the density operator master equation
treatment of an ensemble, the dynamics of the dissipative system is described by a state
vector. The need to employ a density operator to describe the dynamics of a dissipative
system arises from the ignorance about the traced-out reservoir states. The density
operator formalism allows for the classical probabilities incurred by this ignorance. It
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(4) To complete the procedure the state vector evolution has to be repeated many
times before the average over a large number of evolutions describes an ensemble
of dissipative systems, a result that satisfies the underlying master equation.

We have described elsewhere [10] how the first-order Euler time steps associated
with the “unravelling” of the master equation above may be replaced by a higher-order
unravelling of much greater accuracy.

As a result of the continuous detection, there are only two possible outcomes for the
state vector at time ¢ + 6t assuming the state of the system is known at time  :

\1 _@A& + %mvvsol.m::%
[¥(2))
TN [+ ) ©)
The result for the density operator after the timestep dt is a mixed state, given by
Nw:olh.:::u_éﬁw + %wvvsolu;BUA@Q s mm::oluciv

ps(t +6t) =
+ Prommp ¥ (¢ + 1) juenp (¥ (¢ + 8) ump @

where the state vectors are normalized. The two coefficients pjump and Pro—jump are
classical probabilities corresponding to the probability for detecting and not detecting
the decay of a quantum respectively.

When observing the decay of a quantum the mixture reduces to a pure state. The
new state vector then assigned to the small system is

o~ |¥(t
(¢ + 88)jump = :eS_lw.A_,wavv: 2’ “

.Srwor can be intuitively understood as immediately after the decay of a quantum the
two-level system has lost all of its energy and must be in the ground state. How-
ever, when no quantum is detected the mixture is reduced to the alternative state

_GQ + %&vv:oluc::u.
Integrating the master equation with a first-order Euler step results in a conventional
density operator evolving from ps(t) = |¥(2)){¥(t)] to
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Figure 1: Expectation value of inversion (o3) for the time evolution of a single state vector

in spontaneous emission from a two-level system. The initial state of the system is [¥(0)} =

(1/V/5) (2le) +19))- (v =0.5).

The non-Hermitian evolution is governed by the effective Hamiltonian
ih
Heg = IWQ ote™ . : (14)

Fig 1.shows an example for the conditioned evolution of the inversion {c3) of a single
state vector starting from the initial state |¥(0)) = (1/+/5) (2le) + |g))- The rotation
towards the ground state mentioned above can clearly be seen. Just before 4yt = 6 a
quantum is detected so that immediately afterwards the system must be in its ground
state. The inversion “jumps” to a value of {o3) = —1 and the system ceases to evolve.
The result of an ensemble average using 10000 state vector evolutions is shown in
Fig. 2 together with an analytical solution, showing that the Monte-Carlo state vector
procedure gives the same result as the master equation.

2. Resonance Fluorescence from a Two-Level Atom

It is simple to extend the spontaneous emission problem to simulate resonance flu-
orescerice. We add an wsn.onmniou vmmnm Hj to the system Hamiltonian

Hy = m@pa.+ +.Q.,aqq|v (15)

which describes the interaction of the driving laser field of frequency Q with the two-
level atom in dipole and rotating wave approximation [1]. The operators a! and a are
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measurement. These measurement fluctuations have been observed and called quan-
tum projection noise in an experiment with single trapped ions [12]. In a purely damped
system such as a two-level atom coupled to a dissipative reservoir in the vacuum state,
the no-detection result leads to a continuous rotation of the state vector towards the
ground state (Fig 1.) As a result, the probability |3} for finding the system in its
%o::& state increases and the quantum projection noise is reduced. This is true for
the no-detection evolution of any initial state except for the excited state, [¥(0)) = {e).
In this particular case the state of the system remains unchanged. There is no inde-
terminacy and hence no information gain from a no-detection result. Because, apart
from the excited state, all initial states evolve towards the ground state we will call the
ground state an “attractor state” for the no-detection evolution. Even though the atom
is not detected in the ground state it is more and more likely that a measurement yields
the ground state. The probability to find the system in the ground state will become
unity after an infinite time without the detection of a decay quantum.

The additional coherent driving field in a resonance fluorescence experiment can
alter the state of the atom without the detection of decay quanta. The atom coherently
exchanges photons with the driving field. Despite this fact the feature of an attractor
state in the no-detection evolution is retained for the case of weak driving (g} < v/4)
(Fig. 5). However, for strong driving (|g| > +v/4) the no-detection evolution changes
from this relaxation to an oscillatory behaviour (Fig. 6). Both the specific superposition
of |e) and |g) in the attractor state, and the switch between the weak and the sirong
driving regime are determined by the relative values of the decay rate 7 and the coupling
constant g.

The existence of an attractor state depends on whether there is a state of the system
for which it is most likely not to detect decay quanta. For the purely damped system
this state is obviously the ground state. If this system is in the ground state the
probability for the no-detection result is always one. As stated in eq. (12), the general
probability for no quantum jump to occur is given by the normalization of the state
vector when it evolves with the non-Hermitian Hamiltonian H.s. When determining
this normalization for the states of the system which are eigenstates of the effective
Hamiltonian it becomes clear why an attractor state only exists in the regime of weak
driving. For the case of zero detuning, the effective Hamiltonian Hg which governs the
non-Hermitian evolution is

ihi
Heg = h(got +§707) — Wﬁiql . (24)
The solutions to the eigenvector equation
Heg|®); = }|®); (25)

depend on the relative size of the coupling constant § and the decay rate 7.

In the weak driving regime (|g| < v/4) these solutions are
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For the case of zero detuning, the Bloch equations are
s . (23l

R=FxS, S=|{ o
¢
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describing the precession of the Bloch vector around the vector S with a frequency
vp = |§|/ 7. The norm of the Bloch vector remains unchanged throughout this precession
so that it moves on a sphere (the Bloch sphere). It takes a time T, = m/|g| for an atom
ipitially in the excited state to coherently emit and absorb a photon from the driving
field. If on the other hand the system is not driven but coupled to a vacuum reservoir
then the no-detection evolution is governed by
1 ih
Hep= mmEoQu - |w|<Q+o.| (36)
and the system evolves over a timestep &¢ :

ale) +Blg) — o exp (—76t/2) exp (—iwqdt/2)le)
+ B exp (iwodt/2)]g) . (37)

The information from a no-detection result is gained on a timescale Ty = 2/v. If on
this timescale the atom can exchange one photon with the driving field, i.e. if Tg > Tp
then there is no specific state of the system towards which it evolves as a result of
detection. The vanishing of the attractor state beyond a specific ratio of ||/ is
abrupt. However, the possibility of measuring the atom in the ground state by not
observing any decay quantum for an infinite time is lost for any driving {§{ > 0. The
reason is that although there is an attractor state in the weak driving regime, this state
contains an indeterminacy with respect to measurements of excited or ground state.
We have discussed how dissipation leads to the idea of “attractor states” in atomic
fluorescence. Whilst we have illustrated this with the simplest atomic system with just
two levels, the concept is of use in describing multilevel transitions. We will describe
elsewhere how attractor states govern the quantum random telegraph signal charac-
teristic of three-level systems involving transitions either to a metastable, or a rapidly

no-

decaying, state.
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