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Quantum theory is presented of symmetric and asymmetric codirectional and
contradirectional nonlinear couplers composed of linear waveguides and a non-
linear waveguide operating by the second harmonic generation. Two methods
are adopted to solve the Heisenberg equations of motion: (i) a power solution is
employed including the use of a computer symbolic method giving the operator
solutions up to the twelfth order, (ii) linearization of nonlinear operator equa-
tions is performed assuming a strong classical pumping in the second harmonic
beam. In this way solutions can be found for the field operators and quantum
statistical characteristics, such as photocount distribution, its factorial moments,
quadrature and integrated intensity variances, principal squeezing variances, cor-
relations of fluctuations, etc. Incident vacuum, coherent and squeezed states and
their superposition with external noise are considered. Regimes for generation and
transmission of squeezed and/or sub-Poissonian light are found.

1. Introduction

In this paper we discuss the asymmetric and symmetric couplers composed of linear
and nonlinear waveguides from the point of view of quantum statistical properties of
optical beams adopting the Heisenberg equations. The nonlinear waveguide is assumed
to operate by the second harmonic generation. Both the forward and backward arrange-
ments for quantum propagation are considered. We use two approximations to be able
to obtain complete quantum statistics of single and compound modes: (i) short-length
approximation explicitly specified up to the second order in the interaction length, and
using symbolic computations, we can obtain the quantum statistical quantities up to the
twelfth order by iterations, (ii) parametric approximation in the second harmonic mode
based on the assumption of stimulating strong coherent field in this mode, which makes
it possible to linearize the problem. The particular attention is paid to a selfconsistent

1Presented at the 3rd central-european workshop on quantum optics, Budmerice castle,
Slovakia, 28 April - 1 May, 1995
?E-mail: perina@risc.upol.cz

0323-0465/95 © Institute of Physics, SAS, Bratislava, Slovakia 279



280 J. wmmmnw.;um

b1(0), b,(0) bi(L), by(L)

a(0) e

Fig. 1. Scheme of quantum nonlinear asymmetric coup
waveguides described by susceptibilities x® and x®
by the photon annihilation operators

ler formed from linear and nonlinear
» respectively. The beams are described
as indicated; L is the interaction length. , ;

quantum description of contrapropagating optical beams. In this way we are able to de:
termine all quantum statistical characteristics, i
distribution, its factorial moments

in various statistical states, including vacuum state
their superpositions with external noise.

2. Equations of motion and their solution

The asymmetric coupler is assumed to be composed of a linear waveguide and a nonlin:’
ear waveguide operating by second harmonic generation (Fig. 1). Thus the propagation
of optical beams can be described in the i g
mentum operator

nteraction picture with the help of the

Giow = —hwab] — RT62S 4 hoc. ol
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where @, by, by are annihilation operators of the linear, funda

monic modes, « is a linear coupling cons
proportional to the second order susceptib
tal modes are w and the frequency of the
Is assumed, i.e. Ak = lks — 2k = 0 hold .
along the z-axis of the fundamental and second harmonic waves. The wavevector of thé
linear mode ¢ is equal to ki or —k; with respect to forward or backward propagatio
If the linear mode q is backward propagating, then we substitute & < &' in (1) and'in
the corresponding equations of motion to have a quantum consistent treatment; these

riginal positions at the final form of the solution [1].

mental and second haf
tant and T is a nonlinear coupling constafi
ility. Frequencies of the linear and fundarmén®
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the twelfth i 1
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Of course, this solution satisfies the commutation rules
[a(0), &' (0)] = (u(1), (L)} = 1,
[a(0), b1(L)] = (a(0), (L)) = 0, (10)
and consequently the following identities are fulfilled:
[U:(L)? = ALY + W (L) - @) = 1,
{U2(L) 2 = [Va(L)> + W (D))? = (D) = 1,
U (L)Va(L) — Vi(L)U2 (L) + Wi(L)Ys(L) = Yi(L)Wa(L) = O,
Uy(L)U5 (L) = Vi(L)V5 (L) + Wi (L)W5 (L) - YA (L)Y5 (L) = 0. (11)

3. Quantum statistical properties of single and compound beams

To describe quadrature fluctuations of single beams we adopt the principal squeeze

variance [6]
da = 1+2[(Ad"AG) — ((Ad)*)]], (12)
and similarly for Ay, , Ap,, etc., and in the compound modes we have for example
Aab, = 1+{AatAa)+ (AbIAD) + 2Re(AdAby)
(13)

~[((2a)?) + ((A51)?) + 2(AaAby)].

Then squeezing of vacuum fluctuations occurs if A < 1 for the corresponding modes.
Denoting the number operators in single modes as 74(z) = af(2)a(z), etc., the

integrated intensity fluctuations are described by
(AW, (2))?) = (N2 (2)) — (fa(2))?,

etc., where A/ is the normal ordering operator. For sub-Poissonian beams these vari-
ances are negative, for super-Poissonian beams they are positive and they are zero for

(14)
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Fig. 3. Photon number distribution p(n, L) for mode a; T = 1, K &
¢ = exp(in/4), r1 = rz =1, {ncn1) = (ncn2) =0.

where I' is the gamma function, Pﬂ: % is the Laguerre polynomial, and
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the other beams. In this way incident coherent beams (all 7 = (ncn) = 0), squeezed
peams (all (ncp) = 0) and their superpositions with external noise can be described.
More details can be found in [5].

4. Discussion

Based on quadrature fluctuations we have obtained for the asymmetric nonlinear coupler
that the signal and second harmonic beams remain coherent up to the second iteration,
whereas the subharmonic beam changes its statistical properties during propagation
as a consequence of self-interaction. Particularly, it can exhibit squeezing of vacuum
fluctuations in stimulated or partially spontaneous regime. Similar results can be ob-
tained for the compound modes. The signal-second harmonic mode is again coherent
up to the second iteration, whereas the signal-fundamental and fundamental-second
harmonic modes can be squeezed in this approximation in the stimulated or partially
spontaneous regime. In the spontaneous process coherence is conserved in this approx-
imation. Based on the fourth-order moments similar conclusions can be obtained. The
signal and the second harmonic beams remain coherent up to the second iteration,
whereas the fundamental mode can exhibit phase dependent photon antibunching in
the stimulated process and phase independent antibunching in partially spontaneous
process. The signal and second harmonic beams are uncorrelated, whereas the funda-
mental and second harmonic beams are always anticorrelated in this approximation.
The signal and fundamental beams can be phase correlated or anticorrelated as a con-
sequence of the coupling of linear and nonlinear waveguides. In the spontaneous process
coherence is conserved in all single and compound modes.

In the symmetric coupler squeezing of vacuum fluctuations can be exhibited by the
fundamental mode of the nonlinear waveguide, including the spontaneous process in
which the complex amplitudes of the incident fundamental and second harmonic beams
are zero, as a consequence of the coupling of linear and nonlinear waveguides. The
other modes are coherent. Also some compound modes can exhibit squeezing of vacuum
fluctuations, particularly this holds for the modes of linear waveguides combined with
the fundamental mode of the nonlinear waveguide and for the combined mode in the
nonlinear waveguide (fundamental and second harmonic beams). This is also valid if
the fields incident on the nonlinear waveguide are zero. All the other compound modes
remain coherent. Sub-Poissonian statistics can be observed in the fundamental mode
of the nonlinear waveguide, including phase dependent effects in the stimulated process
and a phase-independent effect in partially spontaneous process. All the other modes
are Poissonian. The signal mode of the linear waveguide coupled to the fundamental
mode of the nonlinear waveguide and this fundamental mode can be anticorrelated
depending on phases of the incident beams. The modes of the nonlinear waveguide are
always anticorrelated. All the other modes are uncorrelated in this approximation.

The symbolic computations performed up to 219 for the symmetric codirectional
coupler and up to z!? for the asymmetric codirectional coupler confirmed the analyt-
ical results and provided additional information about quantum spatial behaviour of
light beams, including regimes of squeezing of vacuum fluctuations, anticorrelation of
integrated intensity fluctuations and sub-Poissonian photon statistics {43
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In the linearized case based on strong stimulating coherent wave in the secop
monic mode, the discussion is to be divided to several cases because for codiredt
coupler and for |T &2| > |x| the roots of the characteristic polynomial are real; s
for |[Té;| < |#]| they are complex. For the contradirectional coupler they are alwayg
We have examined effects produced by the nonlinear dynamics of the process
as by the nonclassical behaviour of the incident beams. We have demonstrateq (Y
the nonclassical properties, such as squeezing of vacuum fluctuations, sub:Pg
photon statistics and oscillations in photocount distribution created in th ot
waveguide by the nonlinear dynamics can be transferred to the signal mode:of th
ear waveguide (Fig. 2 illustrates the spatial development of the reduced factorg;
ments for contradirectional asymmetric coupler exhibiting sub-Poissonian behiisk i

codirectional coupler oscillations in the photocount distribution having quanturm;
can interfere with oscillations arising if linear coupling prevails so that the- )
the characteristic polynomial are complex. The quantum statistical featuré§ sra .
exhibited in the compound signal and fundamental mode. Although the quanturtisgs
certainty product is generally increasing along the way of propagation, in som
the uncertainty product in single modes can periodically return to 8&:8&4&:. and
the corresponding mode can return to a state very close to a pure state. ‘Thiseigesy
pecially actual for the contradirectional coupler. In general, additional externalsiiais
rules out any nonclassical behaviour of light beams. However, in some cases the quat
tum properties of the incident beams are fastly smoothed out, whereas thé ‘quantw
properties arising from the nonlinear dynamics can servive in a reduced form(E
3 demonstrates a development of quantum oscillations in the photon &mnu:u:ao%&
contradirectional asymmetric coupler, arising from the initial squeezed state _muﬂ_&.ﬂm
nonlinear dynamics). Phase mismatch effectively reduces the power of mbaonmhamwm.
supports conservation of the initial photon statistics.
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