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We propose an all optical trap using two atomic transitions starting from a com-
mon atomic ground state with angular momentum J to two excited states with
angular momenta Je, = Je, = (J or J —1). The atoms are spatially trapped and
cooled towards a single quantum state which is largely decoupled from the light
fields. Calculations for two blue detuned counterpropagating ¢4+ and o polarized
light fields in one dimension predict that close to 100% of the atomic population
can be trapped in the lowest quantum state. Due to the relative *darkness’ of
this state spontaneous scattering of photons as well as dipole-dipole interaction
between different atoms can be expected to be several orders of magnitude less
than in a conventional magneto optical trap (MOT). From this one could expect
extremely high densities.

1. Introduction

The past few years have seen dramatic improvements in laser cooling and trapping
of free atoms [1]. A particular goal is to increase the density and, at the same time,
to decrease the temperature of an atomic sample in order to observe many-particle
and quantum statistical effects. In the most advanced experiments, densities which are
only by a bit more than one order of magnitude off from the limit of Bose-Einstein
condensation have been reached. [2]. The most commonly used device for laser cooling
and trapping of neutral atom is the magneto optical trap (MOT) proposed by Dalibard
and coworkers [1]. Due to its relative simplicity and robustness it has become almost
a standard tool in experimental quantum optics involving gaseous atomic media. It
has been found that the maximum achievable density in such a MOT is to a large
extend limited by a repulsive force between different atoms mediated by spontaneously
rescattered photons. One way to partly circumvent this problem in Alkali atoms was
demonstrated by Ketterle with his dark spot trap, by blocking the repumping beam in
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o4 —0-—polarized laser beams. The electric field of (this LD laser) configuration reads:

L
2t

[t

— - L . e .
E(z,t) & (al(2)ey + al (z)é-) e7 ™ + & (a1 (2)Es + a’(z)é-) e
akis) = Pk (1)
&1 2 denote the electrical field amplitudes, and E%_m (k12 = Ewﬂw\nv are the frequencies
(wavevectors) of the two pairs of laserbeams. By €+ we denote spherical unit vectors.
We assume that each laser pair interacts only with its respective atomic transition, which
enables us to eliminate the explicit time-dependence of the Hamiltonian in a rotating
frame. Here both fields are assumed to be blueshifted with respect to resonance. The
master equation for the reduced density matrix governing the internal and external

dynamics reads (h = 1):

po= —i(Bal2)p— pHI()) + L5
Hal(?) = %+§i$
Var(d) = 3 (Ue—iZ) [0t ()] 1) + a4 (2) + DA () (=1 + (@} () (+1]]
k=1,2

(2)

In writing Eq. (2) we have adiabatically eliminated the excited states, which is valid in
the low—saturation limit. H.q is an effective Hamiltonian, V4, is the optical potential
describing the interaction between the cooling laser and the atoms, M is the mass of
the atom, and |m) are groundstate Zeeman-sublevels. The optical potential strengths
U; and the optical pumping rates ; are related to the detunings A; = L wh the
Rabi frequencies ©; and the atomic decay-rates T'; by U; = A;s;/2 and v; = Tisi/2,

where s; = 10?/(A? + I'?/4) is the saturation parameter of the i-th transition. £p is

the standard recycling term.
As a first attempt to obtain some qualitative understanding of our system we cal-

culate the adiabatic potentials. To this end we locally diagonalize the optical potential
Var for v = 0. In a semiclassical picture this corresponds to the potentials seen by
slow atoms. In the case of J, = 1 the two adiabatic potentials corresponding to the
maximally and minimally coupled internal atomic states can be analytically calculated

and are given by (see Fig. 1):

Vi (2) = (U + Us) & \JUE + U} + 20103 cos (22(k1 ~ k)
(3)

In the case of blue detuning of both laser frequencies relative to the respective
transition-frequencies we find that the minima of the adiabatic potential V_(z) co-
incide with points which locally decouple from the interaction with the lasers (=zero
lightshift). The period of the potentials is determined by the difference of the wavevec-
tors L, = :\_MH — Mm_ The third adiabatic potential corresponding to the m = 0 state
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FIG. 2

ulation ITo as a function of U, for various values of v2.

Fig. 2. Steady state ground state pop
The other parameters: Uz = 3ER, 11 = 1Er and ko = 1.05k;.

depths of the same order of magnitude, the ground state wavefunction can adjust to
the two laser fields simultaneously.
Note that the probability to find th

unity for parameters which seem well

e atom in the lowest eigenstate can reach almost
in reach of present experimental capabilities.

Furthermore we find, that in order to obtain a high Tlo, it is not important to have
an extremely dark ground state, the relative magnitude of the lifetimes of the lowest
states is essential. On the other hand in order to minimize atom—-atom interactions in
the multiatom case, a very dark lowest level should be advantageous. Such a very long
lifetime of the ground state compared to all other states can be obtained in two limits:
(a) the strong confinement limit, where the center of mass wavefunction is of the order
of or narrower than an optical wavelength and (b) the case of a wide shallow potential,
where the lowest eigenstate very much resembles a free (plane wave) dark state with a
slow modulation of its spatial amplitude. Here one recovers standard VSCPT of free
The parameters considered here correspond generally to the former case (a).

atoms.
le, the width of the ground states for the parameters labeled by 1 —4 in Fig.

For examp
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might be a major possible application of such a dark and dense purely optical trap.
In this work we have restricted ourselves to a Jg = 1 ground state. An analogous

scheme is also realizable in other atomic transition schemes which possess dark states.
In particular we have done calculations for J, = 2 and J; = 3/2 ground states. Note
that similar to standard VSCPT, our scheme can be generalized to 2D and 3D. For
example, using a tetragonal configuration consisting of four pairs of laserbeams [14]
one finds (dark) local minima of the adiabatic potentials. However, explicit numerical
calculations for realistic parameters in 3D currently seem impossible. Finally we want
to mention that a similar behavior also turns up by applying the two pairs of lasers to
the same atomic upper state (bichromatic field) [15]. The quantitative results in this
case are, however, a bit less promising.
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