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MEASURING THE QUANTUM STATE OF LIGHT!
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A short overview is given on recently developed techniques for reconstructing the
quantum state of light from data measured by means of balanced homodyne detection.
In particular, a reconstruction scheme for the density operator in Fock representation
is described which works also in case of inefficient detectors.

1. Introduction

The usual way of gaining information on a quantum system is to measure an appro-
priate observable. Clearly, such a procedure shows up only one facet of the micro-object.
| To'get more information, one has to measure a second observable, preferably noncom-
muting with the first one, and so on. However, this will become a cumbersome task”
since, in general, one needs a completely different experimental setup for every new type
of measurements. Moreover, the question arises as to whether the information gathered
in this way is complete. On the other hand, it is well known that the full quantum
mechanical information on a system is contained in the wave function or, more gen-
erally, the density operator. Hence it appears desirable to determine the latter from
experiments, so to say to measure the quantum state. In what follows, we will give a
short overview on some recent achievements in this field.

2. Reconstruction of the wave function

The problem of reconstructing Schrodinger’s wave function from measured data,
namely the probability distributions for both position and momentum, was addressed
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Fig. . 1. We plot the &@-&mwmzmmun part fmn{(ze) of the pattern function Fron(ze ®v
mxvéﬁi — )0} fmn(ze) for A.w._mmnmdn values of m, n (full line) and compare it with nrm, corre:.
sponding product of the Schrédinger wave functions ¢m(ze) and tn(zo) for the Fock states

|m) and |n) (broken line).
I
e

m:mw.a% in the early days of quantum mechanics. In his famous handbook @w,a,o._m {1
Pauli, however, devoted only a footnote to this issue, raising only the question: .mm fo
whether 3.@ wave function is determined unambiguously in this way MQ:@: Ewm_w
now no satisfactory scheme to solve this reconstruction problem rwm.vmo: mgmo ed :
Achievements were made, however, in the field of optical or electron microsco {2 &ﬁ In
fact, the mathematical task is here the same as in quantum theory: The field %Mﬁiw:mcu
.Em%m the no._m of Schrodinger’s wave function, and what can be measured wm the intensity
in both the image and the focal plane. Since the field distribution in the latter is nothin,

v.i. .arm .m,oclmn transform of the distribution in the image plane, the _nio Enmsmm@
&mnj_ucﬂo:m correspond precisely to the quantum mechanical vo&&o: and momentum
distributions. We will not go into details of the reconstruction problem which, in fac

amounts to retrieve the phase of the optical field (or Schrodinger’s wave ?:Q.vonv ,. <<m

want only to point out the mathematical difficulties one encounters | o ,

The procedure will be to expand the wave function #(x) with respect to a suitable
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Fig. 2. We present an example for the reconstruction scheme based on Eqs.(8) and (9). Fig.
9a shows the true photon-number distribution for a squeezed state with squeezing parameter
s = 20 and displacement parameter o = 3, while Fig. 2b displays the distribution reconstructed
from computer experiments using 260 quadrature phases with 100 simulated measurements for
each phase. The errors indicated were obtained from 10 simulated runs.

orthogonal basis 4. (z)

P(z) = Y catin(2). (1)

In quantum optics, it appears natural to choose the u,’s as the energy eigenstates of the
harmonic oscillator, i.e. Fock states in z representation {4]. Expressing the probability
distributions for z and p, assumed to be given, through the unknown coeflicients ¢,
in Eq.(1), we arrive at an infinite system of equations that are quadratic in ¢n and ¢},
and, hence, cannot be solved in a simple way. An approximative scheme can be based
on truncation [4]: Assuming that the coefficients ¢, vanish approximately forn > m
{fixed), one gets just one equation for lem|?. Since an overall phase of the wave function
has no physical relevance, this gives us cm. Then we can select two equations which,
after insertion of ¢, become linear in cm—1 and ¢}, _;. They are readily solved to yield
€m—1. In the next step, we can select four equations which, after insertion of ¢ _1, give
US ¢y and ¢n—_3. Proceeding similarly further, we find all coefficients ¢,. The scheme
in question is, however, unsatisfactory, since we start from a rather small coefficient ¢,
whose error will propagate.

Noticing that the equations we have to solve are, in fact, linear in the density matrix
elements gmn = cmC, We might say, the dilemma is that we have not enough equations
to determine the gmn’s. Actually, they are not independent since we are dealing with
a wave function, i.e. a pure state.

Hence we can expect that the reconstruction problem becomes, in fact, much simpler,
from the mathematical point of view, when we study statistical mixtures which amounts
to determine the density matrix elements. However, this can be done only at the expense
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Le., it goes to zero as an inverse power of 2. This feature is of practical reley,
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measurements has to be drastically enhanced [13]. This is the price one has to pa
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