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() _nonlinearities in a cavity is investigated: the

The mutual influence of two x
’competition’ of doubly-resonant second harmonic generation and nondegenerate
optical parametric oscillation. This leads to novel squeezing effects such as twin
beams with sub-Poissonian photon statistics in the difference and the sum of the

two beams.

1. The Model

x()-nonlinearities have proven a very effective tool for the generation of nonclassical
'squeezed’ light [1] - [7]. Recently, also the generation of very large effective third order
nonlinearities with phase mismatch from cascades of second order nonlinearities has
attracted a lot of attention and has already been realized experimentally in KTP and
organic crystals [8].

In the proposed system the interaction of two x(*) nonlinearities in one, or possibly
two, crystal(s) inside a cavity — or a crystal representing the cavity itself, such as a
monolithic optical internal reflection resonator [9] — is investigated: two photons of
frequency w; in the fundamental mode a;, which is resonantly driven by a classical
field £, (t) = £ e~ 1!, can be annihilated to form a photon of frequency we = 2w, in
mode as(second harmonic generation, SHG); this photon with frequency wy can split
into an pair of unequal photons w; = w; + A and w_ = w; — A(nondegenerate optical
parametric oscillation, NDOPO)— and vice versa. We adopt the model Hamiltonian

H = m_EEHS + m&ﬁ&g + mE+aH.p+ + hw_al a_
.I.mm @%Q —dal +ihy (ayal al — alara
5 1 a2 1%9 Xlaxa a_ 2044
+ih (£4(t) a] ~ £1(t) a1) 1)
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mM:MMMMWM Mrmmw processes. The frequency offset A between the OPO-modes and ¢
a .
o maﬁmw m_w %MMOM “am Wmmm?onmm” among all the cavity resonances usually oms
. , satisfying the phase matchin iti e

‘ . g condition that h Wost
“M_Mo:oM _Ommmm. Uao no~.-u~_.:m constant the will oscillate; all others and Emrww Mro o
OM@ M:ﬂ.: %am m_m:_mo@:.aw and thus do not have to be considered e

o vm@:mmmw_.wmm.. 5%%0« studying the combination of these two E%im:m.:% VEry success
o erers 15 the _.Qm.m, that each nonlinearity can be understood as a noncl -
e n:maSEMEWB driving mrm other and thus the wealth of squeezing effects ?Mmom__&
mzanm@wﬁmm . WZWmMmmMMooNE_W as sW: as sub-Poissonian photon statistics) that omus_u.m
. . own that the ’competing nonlinearities’ i ,

output beams with the following useful Eowﬁ.ammm“ e system s

a source &m
el o

¢ resonant above threshold oscillation == large brightness of the source

® no external reqularization or Jeedback of any kind needed

® twin beams: two output beams of correlated photon pairs

* n each individual beam reduction below shot noise (even < 50%)

o the sum of the twin beams can drop below shot noise

up to 100% squeezing in very high frequency components. =

In a first

cquation s Mwﬂwomwr one may neglect quantum effects and solve the vmmanmemmm_,

i :H_ on for the Q@Eﬂmm slowly varying amplitudes a1 and a3 of the fun-

ot 4 e e mmmnosa, harmonic, and a4 for the OPO modes [10]. This, however. is

nor 2 Omom:m%ﬁ“w Mrﬁ:_wzom because of the phase diffusion that is miammma to vm.wm..,a
. : the phases ¢4 of ay are in neutral equilibrium (the corresponding

cigenvalue is zero). Thus we tr ]

. ansform the equat moti . s
[ = o i quations of motion to the OPQ-int
+=alay and I_ = o’ a_ and the product U = o a_  eil#++4-). HieHEle

@1 = -y + Kaj as + &

az = I\EQNIWQWIXQ

.Q = ~(4+1)U + xa (It + 1)
Iy = =2y It + x(agU" + asl) .

It is an easy task to verify that
o! = =
T ? + Hv
Y1

3 o

I
= =2

o _ 1 . .
U = —gr(a)?-2a; 1 % (_poy

X T+

H.
I

[\

represents a stati 3 i
p § a stationary solution of Eq.(2). The constant - i.e. pump-field-free ~ value ,

of tl i ici
1e amplitude of the second harmonic in Eq.(3) can be interpreted as an equilibrium

Onics -

256

Sub-Poissonian twin beams

®, , O
©

20, ®, ®, , O_ 20, w,

«—> @ <--

AIV.A'IV

mn < Mwnu,nmr m~ > mgw

PFig. 1: Steady state equilibrium below and above the threshold for oscillation of all four modes

between the two ’channels’ that the second harmonic can ’flow’ into above threshold

(cf. Fig. 1).
A sufficient (but not necessary) condition for the stability of the quadruply oscillat-

ing solution is given by

€1 = NH\MZ::: > 1 with M\.Zi.mmv = M A~ +r lv -
r= R\X < PTmaz with Tmaz = R\Hl AH + u\lwv ) Amv
Y Ré!

The first condition is needed to make the solution Eq.(3) physically reasonable with
U° < 0 and thus positive intensities I§ > 0. The second condition ensures that one is
in a regime without multistability [10]. For r < rmas the threshold & presn lies below

the threshold value M%muuov of the selfpulsing instability in the SHG system {11] and for

P = rpqp the two thresholds coincide.

2. Squeezing variances

Starting from a Fokker-Planck equation in the same variables as in equation Eq.(3),
in the linearized theory the matrix of squeezing spectra is given by [1], [12]

Sw) = [iw + A°) 7" D° [—iw +(A%7] 7 ©)

where A% and D° denote the Jacobian matrix of the drift vector and the diffusion matrix
of the Fokker—Planck equation, evaluated at the stable stationary operating point. It

is convenient to define squeezing variances in the following way

for i,j € {a1,b1,as,b2}

SweaAEv = 14 /\i .m.s..;gv >0
a\.ino:?\v = 14 E M_:AEV >0 for 4,5 € Af._ le A.Nv

b I;1;
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mn” Mrm "coherent’ and ’incoherent’ case of dsub
photon statistics i . r and sub-Poj N
o ngmM _“Mwﬁm n Mrm output fields; with these definitions :o:n_wmmma& effe M_mmoEwu ‘.

s as a drop below the shot noise level which @ CHECLS map;;
BRSEE, ch corresponds to unity in both

quadrature phase squeezin

. O:_.% symbolic-algebra-program-
Q:,.:o:maz 8 x 8; it was finally possib
adiabatic elimination of any kind)
length (with the indices a;
respectively):

vmnr.wm.mm make it possible to tackle this problem

le to bring :ﬁ general analytical solutions AEMW o
nd) mom nr.m squeezing mv@o.im into a form of Emsmmmw&
i referring to the amplitude and phase quadratureg

for the fundamental:

Varn (W) = 14 291 Sarar (w)

b6y
Q% (W) (w? +93) - 2eo]*(w? + 727)

= 1F dmle|
OO Wi+ le20)? + N2 (w)] + leo? M ()

for the second harmonic:

M\Mwnw AEV =14+ M\xm.m.amnu AEV | A vm ‘
4263 @

= 1F e =, B @l - o T3 (w) !
QL W) [W2 (1 + 72 % ) + N2 ()] 1 [eo? Ma (@)

with the stationary fields

— 0 =
mH'sﬂQH“ mm”*ﬂ@mv mcmXJ\NO

and the definitions

MRw = ’+m+ [e2])?

QR w) = w?+20F1)7 0
Ni(w) = [w? = ya(m & fea]) — fer]?] |
Me(w) = -20° 1% (w) - le11*] + leo]® T% (w)

21 F DT [nI2(0) + e Py ~ )] .

or the intensity fluctuation spectra in the OPO-beams one find
nds

for the single beams:
Viin e = Mw\
gl AEV 1+ MW&%NHNHAEV
.IN o
L2 152 R(w) + [eo’ T () — [eo]'T2 (w)

W +47% W R(w) — 2o P(T7 (w) — [e1]7) + ﬂg_%w (w)

for the difference of the intensities in the twin beams:
2

Vi (w) = 1+ 2L (s ~ “
NW A 114 (W) .WN»NﬂTtvv = 1472 ﬁmvn
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for the sum of the intensities in the twin beams:

Vi) = 1+ 78 (S1ars () + Statz () 013
=

R(w) = rleof? ea|?
W?R(w) — 20 |eo[F(T3(w) — lea]?) + feol* TR (w)

=1+ 47

with the additional definitions

(@2 +73) T2 () = 20PNy (w) — lea[*
22 (P2 (w) — le1f*) £ rlerP(w” +47) -

R(w)
Ty (w)
The specific form of these results has the great advantage that the full analytical

solutions of the two subsystems SHG/NDOPO can be immediately found by setting
one parameter to zero and then reinterpreting the stationary amplitudes lei]:

Il

€o| =0 €1],]e2] 20
Vsua(lel, le2l) Iegl> <zw@ﬂo:mo_q_9_“_mw:_ el Vnpopo(l€l)

The most interesting features do not occur in the frequency component w = 0, which
makes it difficult to find the optimal parameters: the exact result e.g. for the frequency
components with maximum squeezing in the second harmonic is a polynomial of high
order. Thus in practice the following approach has proven more useful: in SHG the best
squeezing is found near the threshold of the selfpulsing instability. At the instability

point & = Mwwo one complex conjugate pair of eigenvalues

~
ymeHI I.A\E ..T QMV |mww_u \Amm +>§+ .«wvm +»Al‘54w|4mmml _mp_mV :AV
2

becomes purely imaginary, because at this point €; = —(m1 + v3), and for & 2 ezt
the imaginary part determines the frequency of the pulsing. Inserting the quadruply
oscillating solution for the amplitudes ¢, und €, in the above equation, the real part

Re(MHCG) = v§ — (41 + 72) stays nonzero for the combined system for r < rmaz =
(14 42/71)/s and the imaginary part takes on the form

wo = V2 (L—rs+2e17s) — (1 + 2 —rsm)? /4 (15)

For the special case r = Pyqe, and thus M.w.wo = Epresh, We get the expression for the
selfpulsing frequency at the instability point of SHG, derived in [11]

SHG _

wo — wiHG = /7271 + 72) for e; —r 1. (16)

wy is a good estimate for the frequency components with the best squeezing — at least
for relatively large r and moderate £. This means that the same nonlinear effects that
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(a)

Fig.2: Amplitude (a) and (b) phase quadrature s

queezing in the second harmonic;
parameters: (a) vz /v = 25, ¥/ =1, r = rmaz,

(b) 2/m =10°, 9/mi =1, r =0.1

lead to selfpulsing in SHG lead to phase sensitive amplification or dam
i.e. squeezing; the important difference, however, is that — even for & >
part is still negative, provided that r < Piaz,
hard mode instability!

ping of noise
EXS ~ theé real
Le. the system does not undergo a real

: o)

Some of the most interesting results are summarized below and at the same tim

contrasted to the results for the independent, subsystems (see e.g. [13] for SHG and {14
for NDOPO): .:;Q

Va

— always super-Poissonian at w = 0, but V,,,, = SW# —0forva>m ,E\_ wo
and r = 1., ;

Comparison with SHG: also Vasa, = 0 for v9 > v,
but at wIHG

erit. K Wy, since e; > 1 is required
Viob, squeezing possible for w = 0 for r < 1/3
Comparison with SHG: no squeczing in the phase quadrature

Vaisy Lorentz-curve of width 5 with 100% squeezing at w = (
Comparison with NDOPO: identical result

Viingle 50% squeezing at w = 0 and better than 50% at w £ 0
Comparison with NDOPO: also 50% at w = 0,
but large excess noise in side peaks

Viuii squeezing possible at w £ (
Comparison with NDOPO: always super-Poissonian.

259
m:v-wommmo:mm: twin beams

'—— Vgingle(®)
........ Vgum ()
o/, ---- Vaiff (W)

: : . . . "
S zing spectra for the OPO-beams: single intensity, sum intensity and intensity
Fig.3: Squee

= — = 1.525=6.1r
difference; parameters: y2/v1 = 0.5, T = By ¥ = Ll s

The fact that the best squeezing is found in m«EBma:n& MMM@:;M Mﬁwﬂ %WQMM MM
relatively large frequencies, the separation of which mo&wm wi v.w._:ﬁm@mﬁ B s
i ble), might be particularly useful for .www__ow:o:m requiring s e
o HMHWMM_%M at moé noise, since the large separation of the two m_ﬁm%mmgﬂhﬁmdomoon ©
b ; ] ing bandwidth. An example tor ]
MMM“% M_SMMSMMQWMMMM”W@MMM m%%@% NMMMM with phase quardature squeezing in the

® 3

mmnom_n_ﬁwmﬁmwwﬂmcﬂwﬂwmﬁﬂwm.25 second harmonic acts as a :o:n_mmmmo.& “Eo&mn_“oiamwwﬂ
<S£Mm ME@E:Q@ noise reduction in the fundamental _.E_o mcﬂwwmwm_%mnpmww MMM L_mwvgw
of the sum intensity in the OPO beams below shot noise, NM. owmvows e
squeezing at nonzero frequencies is concerned — at .ﬁrm same O_WM - mmdmxmaca wi
enced by the OPO beams (cf. Fig. 1). In the ordinary ND the maximum noee
reduction in the single beam is limited to moﬁ.u at zero m«a@cﬁmﬂnﬂa nd I can be shont
analytically that the sum intensity of the twin v.mmam is al - M e e
In the combined system the interaction of n.:o twin Ummamré_ e et ol
which are amplitude squeezed, makes it possible to Sa:om.n e w:ms”ro e e ie
noise: again the two symmetrical dips that are ormﬁwo.ea:mi% o .saowm;%  oppeat 1A
the spectrum, at about the same location uzrmuo the single beam 1

are also suppressed below shot noise (cf. Fig. 3).

3. Conclusions and outlook

ibi ibunch-

The competing nonlinearities m%mnma.nmb be mx.vmnema _ﬁ._o A.wmar_mg_w ,Mﬁmwﬂm:mmﬂom et

ing [15] in the sum intensity of the twin Umw«:m 1n Emﬂ :EQMQ o m:v-wommmmim:

Particularly just below threshold; this could :W:iz be in .mﬁ%i%o A
tate of pair emissions of correlated photons, smeared out” in t y
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a) Poissonian twin beams

cos sin an B u

b) Sub-Poissonian twin beams

® o0 0 oo ...\...
..‘.....’....

Fig.4: Photodetection of Poissonian and sub-Poissonian twin beams

lifetime (the spectral width of the correlations is limited by ¥). Regularization in the
emission of pairs helps to avoid overlaps between photons from subsequent pairs and
makes the identification of the partner of an individual photon that was registered more
reliable, compared to Poissonian twin beams of the same intensity, as indicated in Fig,
4. Besides the investigation of the below threshold behaviour, the inclusion of cavity
detunings as well as pump field fluctuations would seem worthwhile pursuing. 5
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