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The possibility to construct quantum states via discrete superpositions of coherent
states is discussed. It is shown that even a small number of coherent states can
approximate the given quantum states at a high accuracy when the distance of
coherent states is optimized. The representation of Fock states |n) by discrete
superpositions can be constructed from n + 1 coherent states lying in the vicinity
of the vacuum state.

1. Introduction

Recently, much attention has been paid to the problem of generating quantum states
of an electromagnetic field mode. In micromaser experiments various schemes have been
proposed that allows us to create states with controllable number-state distribution
{1, 2]. There are theoretical results presenting that certain quantum states can be
arbitrarily well approximated by discrete superpositions of coherent states [3, 4]. The
significance of applying a coherent-state expansion instead of the number-state one is
to open new prospects in "quantum state engineering” . Nonlinear interaction of the
field, being initially in 2 coherent state, with a Kerr-like medium [5] or in degenerate
parametric oscillator [6] leads to superpositions of finite number of coherent states.
Back-action evading and quantum nondemolition measurements can also yield such
superposition states {7, 8]. An atomic interference method has been developed, which
can result in arbitrary superposition of coherent states on a circle in phase space {9l
Based on these promising schemes, implementation of experiments capable to produce
required superpositions of coherent states can be anticipated.

In this paper we shall discuss the possibility to construct quantum states using
coherent states superpositions. We find a simple set of superposition states which
coincides with the Fock basis for any practical purpose.
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Fig. 1. Wigner function of a Schrodin o
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the ﬂmm.w_ axis of the phase space. Between gb :
O.w..pmm_m: bells of individual coherent stat . .
a mﬂjmm can be seen emerging from the n:m.Mm ”
tum interference of the coherent states. )

2. Schrédinger-cats and the Fock states

The superpositions of coherent states [10]

|, ¢) = cs(] @) + €' | —a)), (1)

referred to as Schrodinger-cat st
. as Schr - ates when the constit
moommwmy:% distinguishable, have attracted much :;mLmMm:ﬂ O] SESies o s
e two most typical cat states are .
the even (¢ =0
i Jandodd (¢ ==« iti
. s. The case with small difference between the constituent mgwﬁ b, e
e called Schrodinger-kitten states. = by analog eo:E
Although the coherent stat i
. es are the most classical of
[ Ao al of all pure states of light,
o P perposition described by Eq. (1) shows remarkable nonclassical f e
:%W:a:om of the quantum interference [11, 12}. o stz it
he Wigner function of the cat state leads us to better understanding of the Eam.,nmo_.

en
ce pattern (Fig. 1.). The two Gaussian bells of the Wigner function correspond to the

Comp osite ”r eIl S es ww—_m an :—UWHMM_H ence mm:ﬂmw _UN.A;QHE occurs U@ﬁfﬁmz nTO —uw:m; .

We note t 1
e that although two coherent states with strongly different arguments are almost -

orthogonal t i i
Saomm_mwwmn N rmwora Mnrmf 1.5 maximal amplitude of the interference fringe remains two
fies Tanger Umfﬂ 4 :o MHEE;MM% of nw_m composite coherent states, independently from
. em. The wavelength of the fri o ,
the dist ringe decreases with the i A
el m_m&m”pommvoimcwmﬁ the coherent states, the phase of the fringe depends o:m._ﬂ_oo ”MWmM,mm
q. etween the composite ot
: . part of the cat state. The pi ome
phas | 3 e pictu
e mmnoogw__nmnm& if we superpose more than 2 coherent states. In ﬁmm omMa Umoﬂ_umcmm
fro m~ : ms_ constructively or destructively interfere with each other and al ; Bcr :w
m::m co ﬂmnm:a state bells to produce different nonclassical states o
was , |
o nmsm%\on_u%: that a single-mode electromagnetic field interacting with a ﬁéo-_mé_
aiom can Mm_vv.mox_ammw._% mo an odd coherent state in the framework of th _.u s
Cumnmi mnm M:o e MSQ_ certain initial conditions [14, 15].- Odd coherent stat g m‘%zmm
ﬁormam Mmﬁm in micromaser experiments [8]. The number state expansio mmmw: mM&
nt s mamw contains only the odd-number states. They tend  Fouk state |
coherent states con 4 y tend to the Fock state | 1)

249

Quantum state engineering .

Fig. 2. The evolution of the Wigner function of the state | n,r) as the parameter 7 decreases
(n= wv At large enough radius [(a) r = 2.5], the Gaussian bells of the coherent states and the
{ the quantum interference, are well announced. Decreasing the radius,

e that of a Fock state 13) (b)) r =15, (c)yr=1]
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d in the case of (d) r = 0.5.
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tes lying on a circle in phase space. Making an
nce of two-level atoms detuned from the cavity

;pitial cob

resonance leads to such superpositions [8]. In the special case of their scheme, when
the” crwwa.m_‘:? per photon” accumulated by the atomic dipoles crossing the cavity isa
rational multiple of 7, a symmetrical superposition of finite number of coherent states
on a circle emerges. Required discrete superpositions on a circle, including the elements
of the basis set given in Eq.(2), can be prepared in a single-atom interference method in
a designed apparatus [9]. Superposition on & circle with small radius, that is essential
in our case, can be mm:mge& in both of the above mentioned oxwolamsg— schemes by
starting with a field initially in coherent state with a small amplitude. The progress
in quantum optics seems to enable us in the near future to create experimentally these

superposition states.

sition ctates composed of coherent sta
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3. Discretization of the 1-D representation

Let us consider a pure state written as a superposition of coherent states along the

real axis in phase space (11,3, 17]
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iscussed in the literature {18]. The one-
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dimensional cohere
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The parameters u and v are connected to the complex squeezing parameter ¢ in; ga
usual way

w=coshr, v=c¢sinhr.

We note that states | 0,¢, Z) are the well-known squeezed coherent states.
In Fig. 3. we show how a squeezed Fock state builds up as we use more and’ Ewm.m
coherent states in the superposition. Here n = 2, the complex squeezing vmgaoﬂmm
¢ = 0.5exp(0, 57) (the direction of .mn:mmN_:m closes 14 degrees with the imaginary axi J
The sampling distance d for each N was optimized, minimizing the mismatch _umﬂémmm
the desired and the approximating states. In Fig. 3a at N = 4 coherent states' m
desired state has not emerged yet (the resulting state has a squeezing direction rathes
different from the planned one). Fig. 3b shows state 6 coherent states. The oBmammmw
desired state can be clearly seen. As we added more coherent states (N = 8 and N'= =0
for Figs. 3c and 3d respectively) the approximation became more and more perfect. -:
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