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The structure of quantum mechanics inposes constraints on the types of correla-
tions it will allow. This makes very strong tests of quantum mechanics possible

1. Introduction

There are now three different proposed tests of local hidden-variables (or locally re-
alistic) theories. ,The first, suggested by Bell, is an inequality for certain correlation
functions [1]. The inequality is satisfied by locally realistic theories but can be violated
by quantum mechanics. A much stronger result was derived by Greenberger, Horne,
and Zeilinger (GHZ) [2]. They found a situation in which local hidden-variables theo-
ties require that a particular measurement to produce a specific value. It is possible,
however, to find quantum mechanical states for which the measurement will produce a
definite result which is different from that predicted by hidden variables. In an experi-
mental test of the GHZ result it would be necessary to make only one measurement to
decide between the two theories. The only problem is that the required states are hard
to produce. This led Hardy to devise a scheme which is easier to implement than the
GHZ one, but which is a stronger test of locally realistic theories than that proposed
by Bell {3].

One can also ask whether it is possible to test quantum mechanics itself. Quantum
mechanics derives probabilities from an underlying Hilbert space structure. If this
structure imposes constraints on the types of correlations which are allowed a test
becomes possible. The virtue of a test of this kind is that the assumptions it makes
are minimal. No particular Hamiltonian is assumed, for example. This means that
if a result which contradicts quantum mechanics were to be discovered, it could not
be explained away by saying that some parameter wasn’t quite right or that there
were other interactions which were ignored but should not have been. What we would
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like, then, is a test of the wa i iliti
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2. System and Basic Quantities

The mm&mu_.a: experiment we shall consider is the same as the one which is used i
the nrmo:m.m_o: of the Bell inequality. We have a source which emits two si :M_cm m.::.y ,
we can n.r::ﬁ of as particles. These then proceed to two detectors aonmnno_.mm. >m€&~ow

one ﬁ.m_.?n_.o to each detector. Each detector has a switch which th assume on mmwﬁw
positions, l.e. at each detector we can measure two possible quantities. At mmmw%_m gwm
we can measure a; or az and at detector B, &, or b5. For simplicity <.<m shall m@mham

that each quantity has only two possible values, 1 or -1. After running the mxvmnm:m.mm :
RS e

many times what we have determined from our measurements are the 16 Eovmwwmaam .
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. .”mwm vamvm:iom P(a; = l,by = m) should obey the laws of probability m.n_m Wwwm%
should satisfy one further constraint. If we only look at detector A the result:ofa
measurement should not depend on the setting of the switch on detector B. The reverse

should also be true. In terms of the basi iliti i
; sic probabilities this conditi i -shall
call the causal communication constraint, is tions which i -~

MU Plaj =16y =m) = MU P(a; =1, by = m);
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We shall only consider sets of probabilities which satisfy this condition
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3. Results
Tsirelson considered the combination of correlation functions
K = [a1by) + {aibs) + (ashi) — (a2ba)| - (3.1)

The laws of probability demand that K be at most 4. If the correlation functions come
from a local realistic theory we have that K must be less than or equal to 2. The natural
question, then, is whether quantum mechanics can fill the entire gap between 2 and 4.
Tsirelson found that it cannot. In particular he found that if the correlation functions
are calculated from a quantum mechanical density matrix then K < 2./2. 1t is possible
to find sets of probabilities which obey the causal communication constraint for which
K = 4. A specific example was given by Popescu and Rohrlich [7]. Therefore, quantum
mechanics cannot generate all reasonable sets of probabilities.

Landau found a different constraint. For quantum mechanical correlation functions
it must be the case that

(a1b1)(arba) — {azb1){azb2) < (1= (@1b)?)""* (1= (asb2)?)

1/2

1/2 172
+ AM —_ A@mvpvwv / AH — Agmamvrv ! E Awwv
This inequality is not implied by Tsirelson’s because one can find sets of probabilities
which satisfy the causal communication constraint and which violate Landau’s inequal-

ity but do not violate Tsirelson’s.
We can derive a new constraint by starting with a special case of Landau’s inequality.

Consider a state for which

Am:vwv = Aﬁwvuv =1 = Awwv
Eq.(3.2) then implies that
AQH@HV = Anmvuv E Aw»v

This result can also be proved in an elementary fashion [6]. We can, however, go a bit
further. We find that Eq.(3.3) implies that

Pla; =6y = m) = Plaz = m; by =1), . (3.5)

a result which is stronger than that in Eq.(3.4). Eq.(3.5) implies Eq.(3.4) but the
reverse is not the case. Thus, Egs.(3.3) and {3.5) represent yet another constraint
which quantum mechanical probabilities must obey.

4. Conclusions

How can we use the result in the proceeding section to test quantum mechanics?
With Tsirelson’s and Landau’s inequalities one could prepare a quantum state which
is on the “edge” of the allowed region, i.e. one which satisfies either inequality as an
equality. One could then perform the necessary measurements to determine both sides
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of the inequality and see whether a violation can be found. In the case of mx:w.wv orie
can prepare a quantum state which satisfies it. For example, if our source emits twq

spin 1/2 particles and we make the identification i

s

ay —* 0zgq; @Hilva.u&w

ay = 0za; by = Opp;
the state .

1) = 2 (111)+ 1 44)),
will satisfy Eq.(3.3). We can then perform measurements to see if either MQ.@LV
Eq.(3.5) is violated. P

Quantum mechanics has provided us with spectacularly successful descriptio 5
nature for the last 70 years. We really do not expect this situation to change. Tt is,

however, good to put beliefs such as this to the test. The recent work on the oosmaﬂm;m
imposed by quantum mechanics make stringent tests possible. S
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