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We describe how physics of computation determines computational complexity. In
particular we show how quantum phenomena lead to qualitatively new modes of
computation. The power of quantum computation is illustrated by Shor’s quantum
factoring algorithm.

1. Computation and Physics

Computers are physical objects and computations are physical processes. Quantum
computers are machines that rely on characteristically quantum phenomena, such as
quanturn interference and quantum entanglement in order to perform computation.

The classical theory of computation usually does not refer to physics and as the result
it is often falsely assumed that its foundations are self-evident and purely abstract.
Although in the sixties Landauer [1] pointed out the physical nature of information, 1t
was not until the first works on quantum computation by Deutsch [2] and Feynman (3]
that the fundamental connection between the laws of physics and computation was
properly emphasised. Recent developments in the theory of quantum computational
complexity [4-7] provide a vivid example of this connection.

Computers solve problems following a precise set of instructions that can be me-
chanically applied to yield the solution to any given instance of a particular problem.
A specification of this set of instruction is called an algorithm. Examples of algorithms
are the procedures taught in elementary schools for adding and multiplying whole num-
bers; when these procedures are mechanically applied, they always yield the correct
result for any pair of whole numbers. However, any operation on numbers is performed
by physical means and what can be done to a number depends on the physical rep-
resentation of this number and the underlying physics of computation. For example,
when numbers are encoded in quantum states then quantum computers, i.e. physical
devices whose unitary dynamics can be regarded as the performance of computation,
can accept states which represent a coherent superposition of many different numbers

1Presented at the 3rd central-european workshop on quantum optics, Budmerice castle,
Slovakia, 28 April - 1 May, 1995
2World Wide Web: http://eve.physics .ox.ac.uk/QChome .html
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The snag is that the complexity classes such as P are defined with respect to classical
computation. Classical algorithms for factorisation are not known to belong to P,
however, there exists an efficient quantum factoring algorithm [7] !

3. Quantum Registers

We start our description of quantum computation with the basic unit of information
pamely a single bit. If a physical object can be put into two different, distinguishable
states then this object can represent two different numbers. We call any two-state
system a physical bit; when the system is quantum and the two states are two orthogonal
quantum states, we refer to it as a quantum bit or simply a qubit. Any two-state
quantum system is a potential candidate for a qubit. Both a single classical bit and a
qubit can represent at most two different numbers, however, qubits are different because
apart from the two orthogonal basis states, which we label as | 0) and | 1), they can also
be put into infinitely many other states of the form | ¥) = ¢o |0) + 1] 1).

Let us mention in passing that although a qubit can be prepared in an infinite
number of different quantum states it cannot be used to transmit more that one bit
of information. This is because no detection process can reliably differentiate between
nonorthogonal states [13-16]. However, information encoded in nonorthogonal states
and in quantum entanglement can be used in systems known as quantum cryptogra-
phy [17-20] or quantum teleportation [21].

Consider now a register composed of m physical qubits. There are 2™ different or-
thogonal quantum states of this register therefore-the register can represent 2™ different
numbers, e.g. from 0 to 2™ — 1. The most general (pure) state of this register can be

_evHMUaa_.avu (1)

where number z is represented in the register in binary form

written as

|2) = |2m—1) ® |2m-2) ® ... |21) ® | 20) (2)
according to the decomposition
m~—1 ]
T = Muwsa: z; =0or 1. (3)
i=0

Note that Eq. 1 describes the state in which several different values of the register are
present simultaneously; this quantum feature has no classical counterpart. In order to
prepare a specific number in the register we have to perform m elementary operations
on each qubit to set it into one of the two orthogonal state |0) or [1). However, in
quantum computers m elementary unitary transformations performed bit by bit can
also prepare the register in a coherent superposition of all 2™ numbers that can be
stored in the register. Take the register initially in [0) ® |0) ® ...|0) state and apply

the unitary operation
1 1 1
A= V2 A I =1 v @
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We can always prepare specific z in the first register and read the value f(z) from the
ster. It was shown that as far as the computational complexity is concerned
i e. the one that keeps track of the input, is as good
This means that if a given function can be
lynomial time using a

second regi
a reversible function evaluation,
as a regular, irreversible evaluation [22].
computed in polynomial time it can also be computed in po
reversible computation. The computation we are considering here is not only reversible
put also quantum and we can do much more than computing values of f(z) one by one.
We can prepare a superposition of all input values as a single state and by running the
computation Uy only once, we can compute all of the 2™ values F(0),...,. f2m -1,

wh; Mu.Uo |2) ) 10) wms HMHM _av_:&v. @

It looks too good to be true so where is the catch? How much information about f

does the state

1) = O FO) +ID 1AW+ +127 = DR = 1) (9)

contain?
Unfortunately no quantum measurement can extract all of the 2™ values f(0), f(1),
s that provide us with

..., f(@™ = 1) from |f). However, there are measurement
information about joint properties of all the output values f(z) such as, for example,

periodicity. We will see in the following sections, how a periodicity estimation can lead

to fast factorisation.

5. Factoring and Periodicity

s of certain functions. In

The factorisation problem is related to finding period
lent to finding a period of

particular one can show that finding factors of N is equiva

fn(z), where
fn(z) = a® mod N (10)

and a is any randomly chosen number which is coprime with N. The result of this

operation is the remainder after the division of a® by N. The function is periodic
and the period r, which depends on a and N, is called the order of a modulo N. For
example, the increasing powers of 2 modulo 15 go like 1,2,4,8, 1,2,4,8,1,...and so on
— the order of 2 modulo 15 is 4 (for more information see, for example [23]).

the order of a modulo N, we can factor N provided r is even
randomly the two conditions are satisfied with
N it is enough to calculate the greatest common
divisor of a”/? + 1 and N. Fortunately an easy and very efficient algorithm to compute
the greatest common divisor has been known since 300 BC. The algorithm, known as
the Euclidean algorithm, is described in Euclid’s Elements, the oldest Greek treatise
in mathematics to reach us in its entirety (try your elementary school textbooks as a

Knowing r i.e
and r mod N # —1. When a is chosen

probability greater than half. To factor



210 A. Barenco, A. Ekert

ammmwo:n@v.ﬂrmnmmc_ﬁn% S.E:mnrmmmnmm,nom,noEBo: &Smofén:_nm:@mg,.\unr LNy,
is a factor of V. thing
To see how this method works let us consider a very simple example of factop
15. Firstly we select a, such that (a,N) = 1; i.e. a could be any number from the sef
{2,4,7,8,11,13,14}. Let us pick up a = 11 and let us compute the order of 11 module
15. Values of 11% mod 15 for z — 1,2,3,...goas 11,1,11, L11,... giving r = 2. They
we compute a”/? which gives 11 and we find the largest common factor (11 nw.f?v

t.e. (10,15) and (12, 15) which gives 5 and 3, the two factors of 15. Respective ordezs

modulo 15 of elements {2, 4, 7,8,11,13,14} are {4,2,4,4, 2,4,2} and in this particular
example any choice of a except a = 14 leads to the correct result. For a = 14 we obtain
r=2,a"/? = —1 mod 15 and the methods fails. o
Classically finding r is as time consuming as finding factors of N by the trial dj
visions, however, if we employ quantum computation r can evaluated very ommomgzwm
Shor [7] describes a quantum algorithm which provides the order r of a randomly chosen
a and which runs in polynomial time i.e. requires poly(log V) steps. Let us now outline
the main features of this algorithm. o
6. Measuring Periodicity ,.u.

Suppose you want to find period r of fn{z) where 2 = 0,1,2,...M — 1 for some
large M = 2™ (M ~ N? and the values F(0), £(1), ... f(r) are all different). Here is
an efficient quantum method. First we choose a computational basis (which we label
{lz)} for the first register and {l f~(z))} for the second register) and compute function
fn(z) in a quantum way:

1 M-1 u, 1 M= e
NiTi > l=) _OVI&S_IMMU_@_?ASV. (1)

Function fy(z) = a® mod N can be computed efficiently. Next perform a measurement
in the computational basis to determine the bit values in the second register. Suppose
the outcome of this measurement is fn(l) for a least [ (fn(l) = fv(r + [) for JI:FE
0,1,2,...). The post measurement state is .

A
_e;n,\wﬁlfuo_?iv_?sv.

where A is the greatest integer less than M/r. Thus in the first register we have;a
uniform superposition of labeled basis states where the labels have been chosen with
period » (L I+ 14 2r .. 1+ Ar). From this state we wish to extract the Emgamho@_
about the periodicity r. = i

The extraction of r will be achieved by applying to the first register the quantum
discrete Fourier transform i.e. the unitary transformation (DFT) which acts on

dimensional Hilbert space and is defined relative to a chosen basis [0y,...,| M — C,w
;| M=
DFT :|z) r— — exp(2nizy/M) |«
2} \IEﬁMo p(2mizy/M) |y)

ing :
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Fig. 1. ¢z and the modulus of its Fourier transform c,.
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Fig. 2. Network effecting a DFT on a four-bit register, the phases that appear in the ovmwwwwwm
w_ﬁm&xv are related to the “distance” of the qubits upon which B acts, namely ¢jx = 7 .
i

The reason for calling this particular unitary transformation Sﬁ. discrete Fourier trans-
form becomes obvious when you notice that in the transformation

DFT: |¢in) = cxlz) — |bout) = Y _cyly) (14)

T

.
i 1 .e.
the coefficients ¢, are the discrete Fourier transforms of ¢;’s ¢

H . :wv

Cy = —— Mumxgwﬁ&@\\svna.
y M~

There exists an efficient quantum algorithm for DFT which is a quantum analog of

i i i 24,25]).
, Transform algorithm (for details see [24, o . .
nrm%ﬁw mmMM OAMMMHGEMMGF of how this works, we consider first the simplified situation

where r divides M exactly. Write A = M/r — 1. The final state corresponding to (12)

is then e

A
= E i 5l o

=0
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Performing DET on | 4o.) gives amwm:oa_o?coro:%a (see Fig,

Twe:av = MU@Q_@VM

where the amplitude of ¢y is

VR Awﬁ.ﬁﬁ +1) 4 j
Cy = —— exp @v = Klm T
)i Wnllm 7 7 mev 2mi—=

M

ﬁ.ﬂ\H * mxiws.s.@\gv\,\m m:\mm wB:_SEoOmE\ﬁ
otherwise

t.e. the Fourier transform of a state with period r is a state with period M/r:

r

1 r—1
_ﬂa:n == ! T
) /\mmmé@q ly/M) | v

2 - «: , .
r%mﬁw ﬂwmn n_ro.m,oﬂ._:mn .?wnmmoaa inverts” the periodicity of the input (r— E\ﬁ
ZW Sm“w NSOm: E<mh__u~.yzww property which washes out the shift I (see Fig. 1)
perform a bit by bit measurem i .y .
colly be 2. At s i e 5 ent on the first register to learn y which can

y/M = A/r, knowing y and M and assuming that A and 7 do not have any common

divis i i
or apart from 1 we can determine r by canceling y/M down to an irreducible -

fracti . .

N.HMQMMMM W_H:LMM from r we calculate prime factors of N. The two essential computati

o.mm o the. a, :mw ion of fy and the @:m:aca discrete Fourier transform can be vmnm.onm om
y so that the whole algorithm takes only about (log N)3 steps ! s

m 3 . . - - ‘
hor’s algorithm is a randomized algorithms which runs successfully only with prob-

ability 1 — ; ..
and awzw_u UM me Sm&rﬂ ow when it is successful. 1t produces a candidate factor of N
Ife> 0 is inde mm”Mm ﬂ %mm _M:w_ division to check whether the result is a factor or :
probability FIW\« o%ﬁ. of the input . By repeating the computation k times, we [
by choosing a fixed k m<mwm.ma least one success. This can be made arbitrarily close'tol
thef, Sepeating § su o_wsa_% large. Furthermore if a single computation is efficient

peating it k times will also be efficient since k is independent of N . Thus' the

success probability of any efficient randomized algorithm of this type may be mEvmm& .

MWN_WWWM:W Awwmo to 1 Srm.rw retaining efficiency. Indeed we may even let the success prob-

retain m_nmommznwn“,wmww M\“w_.\w\ 29 Rvo;ﬁom N) and k increase as wo;ﬁo.m N)a stll

> ifying the success probability as close to 1 as desired. Shor’s

. : j . red. Shor’s

MWM«MMMM mmmoﬁon_:m &mou.;r:_ is of this type; it is based on an efficient &moinrm:.i ich
a factor of the input N with probability which decreases as p\vo_v\com\ﬁ.. :

The r i i i :
andomness in the algorithm is due to certain mathematical results concerning,

the distribut: . .
istribution of prime and coprime numbers. For example, for A being chosen at

* gate, two for a two-

and -

.., 7~ 1 chosen equiprobably. From the relation

~ and performing the operation
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ows from number theory that the probability of X and r to have no common
from 1 is greater than 1/ logr for largish r (see for example [23,26]). Also
he assumption that r divides M (very unlikely and adopted here only
Mc_. vo&pmomwom_ purposes) the Fourier transform of ¢; will not produce sharp maxima
asin Fig.1. which may contribute to possible errors while reading y from the register.
mncmoasmzn estimation of r is calculated using additional mathematical approximation
techniques (continued fraction expansion).
If we try to factor bigger and bigger numbers N it is enough to repeat the compu-
tation ~ poly(log N) times to amplify the success probability as close to 1 as we wish.
This gives an efficient determination of r and an efficient method of factoring any N !

givisor apart
f we abandon t

»

7. From Quantum Computation to Quantum Networks

An open question has been whether it would ever be practical to build physical
devices to perform such computations, or whether they would forever remain theoretical
curiosities. Like classical computers, quantum computers can be built out of logic gate
petworks. In the case of a quantum computer, a logic gate can be thought as a unitary
operation that acts only on the space of a restricted number of qubits, one for a one-bit
bit gate, etc. Deutsch [27] described quantum networks composed
of elementary logic gates connected together by wires and showed that there exists
a universal quantum gate from which any quantum computation can be built. More
recently Barenco [28] and independently Sleator and Weinfurter [29] (1994) proved that
a single two-bit gate suffices to implement the Deutsch gate. Finally it has been shown
that almost any non-trivial two—bit gate is universal [30,31].

Quantum logic gates perform elementary unitary operations on qubits. In this
section we will illustrate how complex quantum operations, such as the quantum discrete
Fourier transform discussed above, can be implemented as a network consisting of only
one- and two-bit gates.

Consider the single qubit gate A performing the unitary transformation

“H(1h) fr

where the diagram on the right provides a schematic representation of the gate A
acting on a qubit ¢. Consider also the two-bit gate B(¢) acting on qubits ¢1 and ¢»

100 0 « "4
010 0

Bé)=|49 01 0 - .
Ooom_.e leﬁ' q2

in the Hilbert space H = Hgq, ® Hgq, of the two qubits with the basis {]0)]0), |0) | 1),
[1)10Y, | 1)]1)} (the diagram on the right shows the structure of the gate). The gate
B(¢) performs a conditional phase shift i.e. multiplication by phase factor e'? but only
if the two qubits are both in their | 1) states.
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The two gates can be used to implement the efficient quantum DFT on a re

. . . P 5 P @mwﬂmw,om.
any size. For example, consider a four-bit register with qubits ag,

...a3. The network

in Fig. 2. follows step by step the classical algorithm of a DFT (see for instance [32), :
Yedh

and perform the operation

s

241
1

[a) —s 7 nMum exp(2miac/2%) |b),

where |b) represents the value ¢ read reversing the order of the bits s.e.

3 3 :
b= 2%s_; with c given by c= > oke. (24)
i=0 k=0

A general case of L qubits requires a trivial extension of the network following the
same sequence pattern of gates A and B. , ﬁ
Each gate operates for a fixed period of time (the clock time of the computer) and
the number of gates needed to complete the full quantum DFT grows only as a quadratic
function of the size of the register. (The transformation on the L-qubit register H.mn::.mm
L operations A and L(L — 1)/2 operations B, in total L(L + 1)/2 elementary ovnmm
tions). Thus the quantum DFT can be performed efficiently. Moreover, it can be o«om
simplified. Note that in the network shown in Fig. 2., the operations B(¢) that m=<o_mm
distant qubits a; and ax, i.e. qubits for which [j — k| is big (and therefore ¢ = a\wTw
approaches zero), are close to unity. Therefore when performing the quantum DFT on
registers of size L, one can neglect operations B on distant qubits (more Unmommm_% on
qubits a; and ax for which |j — k| > log,(L) + 2) and still retrieve the periodicity ‘of
coefficients c;. R
‘The network of gates for the quantum DFT enables the efficient maw_mgmuﬁwﬁmr

of the second part of Shor’s algorithm. The first part requires an efficient @:mi.ﬂmww
evaluation of the function fy(z) = a® mod N. The computation of fn(x) is “easy” i.e.

the number of gates does not grow faster than a polynomial in the size of the input.

The respective network is constructed by combining networks which perform addition
and multiplication in a reversible and unitary way.
8. Practicalities ey

g

It remains an open question which technology will be employed to build first quan:
tum computers. The conditional quantum dynamics which supports quantum logic
gates and quantum networks can be implemented in lots of different ways ranging from
the Ramsey atomic interferometry [33] to ions in ion traps [34]. However, in order
to perform a successful quantum computation one has to maintain a coherent :iﬁ:%
evolution until the completion of the computation. In practice qubits, registers, and
the whole machine interact with the environment causing decoherence. If the state Om
the whole machine is described by a density matrix in a computational basis

p(t) =D pav(t) |a) (b]. (25)

a,b
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then a typical interaction with the environment in a thermal B:m‘:vi::g m#om:ouwm

off-diagonal elements (pas(t) — 0, a # b) and n_.S_:mam the Em.mosm._ elements
fhe ) — pthermal)  When the off-diagonal elements {which are Sm@osm:ujm for interfer-
?gmv <mzwm_-_g@:@:a:5 computers lose their unique power. Simple armw_.mﬁ._om._ ano_m of
%oorono:na [35,36] show that the probability of a successful oon:mwnwoc in a single run
MMMHanmm mxwommsﬁww_ﬂw with the input size (= _o.m N) which implies that &moorm_.mwo.a
cannot be efficiently dealt with by simply ggmmm:.ﬁ number of runs. What we nee _m_

me form of “quantum error correction” to stabilise Em computation. A theoretica

Mwmm:u:;% for one such stabilising technique is outlined in {37]. tecokh

From the experimental point of view one may try to reduce the effect of deco mnmznom
by employing technologies which allow the wmi,onams.om of many &Qdowg_ww owaﬁm_ a-
tional steps within the decoherence n.::.w Am.mm [38] for _.Em_.mmrzm z:EQMS mmﬁ_:ww» %ww
regarding several selected physical S&._mmsosm of qubits). >E_o.:mr ﬁ m:ocnnomw a_ o
nologies cannot support even a very simple @:m,i:g factorisation sm. ope .M_Fu_ :
world-wide experimental efforts will make practical quantum computation GOmw_ e in
a not too distant future. It should be stressed, roéméﬁ.g@n from the fun amen-
tal standpoint it is irrelevant when exactly the mnm.a non—trivial quantum ooanm:ﬁowu 18
built — what matters is that quantum computation tell us .w.voi a no:ﬂaﬂwo: ,HM-
tween physics and computation making the 0.<<o gwan_.gm.m of science .Emmvmmw a@m SM
philosphical implication of this fusion are nothing but trivial and are discussed at leng

h : .
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