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Within one level R-matrix approach several hindrance factors for the *°O radioac-
tive decay are calculated. The interior wave functions are supposed to be given
by the shell model with effective residual interactions, e.g. the enlarged superfluid
model. The exterior wave functions are calculated from a cluster-nucleus double-
folding model potential obtained with the M3Y interaction. We analyzed the fine
structure of cluster decay in the case of the >**O-decay of ***Th as an example.
Good agreement with the experimental data is obtained.

1. Introduction

Recently Hourani and his co-workers [1] experimentally discovered the fine structure
in the *C radioactivity [2]. The theoretical studies of a- [3,4] and heavy-cluster
decay [4,7] have very much in common. We study the decay process as composed of
two main steps: First the mother nucleus makes a kind of phase transition from the
initial state, which could be of any structure (Fermi liquid, superfluid, spherical or
deformed, one or many a- cluster state, one or many combined heavy cluster state
etc), to the final state composed of at least one cluster, which is to be emitted, and
the residual nucleus, which may have also any structure as above. One mechanism of
such a transition could be the cluster condensation, or what usually is assumed to be a
formation of the cluster from already formed condensates of smaller cluster [5]. Another
mechanism could be the slow shape deformation [6] from an initial shape configuration
of the studied many-particle system through the shapes that are energetically very
unfavored to the shape corresponding to two daughter nuclei in contact.

Secondly, the two daughter nuclei tunnel through the potential barrier in their rel-
ative motion, without further change in shape.

Most of the theoretical models of heavy cluster decay [7] is based assentially on
Gamov’s theory (8], which was the first success of quantum mechanics applied io the
o-decay phenomenon, i.e. a detailed description of the second step - the tunneling
through the potential barrier. The differences in approaches are related to the way of
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calculating the potential barrier defined by the interaction potential
emitted cluster and the residual nucleus. All these theoretical treatments fit a Specjs
dependence of the favored cluster transitions, analogous to the Geiger-Nuttal 1 E
for favored alpha-decay, which emerges directly from the stmplest ,._mﬁ.m%m-gm!ﬁm

Kramers-Brillouin (JWKB) expression of the penetrability determined by the Squarg:
well plus Coulomb interaction potential. The unfavored transitions do not folloy th
Geiger - Nutta] law, because of the large variations of the reduced widths [3,41
12], which have g, key role in the understanding of the decay process and requirg

precise knowledge of the structures of the initial and final quantum states. We car
learn much about the structure of the atomic nuclei and the mechanism of the decay
phenomenon from such transition. For instance, when ‘treating the favored clustey
decays, one assumes that the nucleons used to build the cluster are more or less strongly
correlated in the initia] state. This fact leads to small hindrance factors [4,10,11]. On.
the contrar, unfavored transitions (with large hindrance factors) are characterized by;
the fact that the nucleons used to build the cluster are collected from different strongly,
correlated groups of nucleons entering the structure of the initial state. In this last case’

it is necessary to breakup the correlated groups of nucleons first and then to vEE,zﬁ
cluster, which is going to be emitted.

In paper [4], the forma,
In the present Paper we continue this work an

for the 200 radioactivity. The calculations will b
superfluid mode] (ESM) [4]

acting betweer ¢

2. The 20 _ cluster decay of the 2297y,

The *2°Th nycleus belongs [13] to the well known re
and N ~ 134

calculated at the moment, due to the lack of accurate”
ther and daughter nuclej. Studying the experimental .
decays to 2254, ground and low lying excited states [14] weé

learn that about fifteen transitions have small (< 100) hindrance factors and five haveil,
hindrance factors of these transitions less or equal to 10.

The corresponding excited states have very different structure and this tells us that :
the structure of the ground state of 29T} is not as simple as e.g. the 225Py cage [15],::

and it may contaip Mmany more-or-less equal components of single quasi-particle .or ;
n:mm_.-wm;_.o_m%ro:o; structure, ;

G:wo;::m;a_? not all the spins and parities of the

225A¢ excited states, populated
by alpha-decay, are known. Thus it is a really difficult problem to describe the quan=
tum states involved in the alpha and 200 :mm:opmcﬂomonn.

e -decay of the the Z2orpy
to describe thege states within ap independent particle model only [16], [17]. Residual
interactions could Play an important role [10]. The restrictions co
ber of quasiparticles and t

hindrance factors for alpha-

ficerning the num-
honons lead to inaccurate siruct, re of the *2°Th_pycleus.
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Table 2: The structure of the
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Pb, as calculated within enlarged superfluid model [5])
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body potential actin,
he daughter nucleus when studying the radial part of th

Gmww_:% the Coulomb part of this potential is replaced by poin!
M _M nrw nuclear part by a Saxon-Woods one [7,10]. The nu
EE:MM::MQ mass of .::w m-n_:mﬁmn and the Qm:m:_hm ::o_mrm Ans’,

¢h an approximation, we calculated the hindrance factors.
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for the 2297} —, 2004 299P}y cluster transitions. In Table 1, the intrinsic spectroscopic
a_%:o:mm ratios have been estimated to be = 0.52. In calculating the ***Th ground
date structure (see Table 2), the used enlarged superfluid model parametrs with the
vw:.:_m coupling strengths G, = 0.14 MeV, G, = 0.10 MeV and the four-nucleon in-
jeraction constant G4 = 0.26 keV. The parameters of the average field (see Ref. [19],
Em_v are: Vop = 55.537 MeV, ry, = 1.30975 fm, e, = 0.70071, ks_,p, = 5.56479 MeV;
Von = 37.787 MeV, rop = 1.39628 fm, a, = 0.70071, ks—on = 7.31907 MeV. The
used deformation parameters are (20 = 0.15, Bao = 0.11. The used particle-hole
uadrupole and octupole parameters (see Ref. [5]) are: kM = k2 = 0.67 keV fm™%
Mo = k2 = 0.06 keV fm™% k3h = k34 = 0.01 keV fm=5; kM = kX = 1. eV fm~C.
The particle-particle quadrupole parameter (see Ref. [5]) is G3¢ = G2 = 15 eV fm™*

A few more comments may be put here. First of all, our hybrid model with a spher-
cal core and only one deformed orbital, when calculating the spectroscopic amplitudes
is not to be taken too seriously for very complex structures. This should be not true
even for structures close to single quasiparticle states, because the assumption of the
axial deformed core is not realistic [20]. On the other hand, when having realistic struc-
tures for both the initial and final states, the calculations within shell model codes with
realistic residual interactions [4] are practically not feasible for nowadays computers.
Therefore simple schematic models like the above presented one would be useful. In
the presented calculations, we estimated the core spectroscopic factor as in the case
of the favored cluster decays, i.e. the magnitude of the core spectroscopic factor has
been mainly evaluated by the the overlap integral between the spherical wave functions
describing the valence odd neutron in the mother and daughter nuclei, which does not
participate in the cluster decay. This overlap integral is less than unity due to the fact
that the two above orbitals are oscillator orbitals with different frequencies [4].

q

3. Conclusion

In this work we reported calculations performed within the enlarged superfluid
model [5] for some selected 2°0 -transitions of the 229Th nucleus. In this case, difficul-
ties arise due to unknown structure of the 229Th ground state and due to impossibility
to calculate truly microscopically the spectroscopic amplitude. A schematic model has
been applied to understand the heavy 2°O-cluster decay of the ***Th.
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