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In this article, we apply the renormalization group techniques to resum the large
logarithmic corrections to the Higgs masses which occur when the scale of super-
symmetry breaking is far above the electroweak breaking scale. We argue that the
calculations made so far missed some terms that, potentially, can be very relevant.

1. Introduction

The Standard Model (SM) is in excellent agreement with all precision electroweak
tests [1, 2]. Nevertheless, there are still some aspects that prevent a complete under-
standing of its structure. The “Higgs” mechanism that is responsible for the generation
of the masses of the particles is one example of these and requires the existence of a
scalar particle (the Higgs boson). Probably the most important challenge facing present
(LEP, LEP-200) and future (LHC,SSC) colliders is the discovery of this elusive parti-
cle. Of considerable interest also is the possibility of extensions of the SM. This is so
because, despite excellent experimental agreement shown by the SM at low energies,
there is still room for extensions at higher scales. The most appealing of those are the
supersymmetric extensions of the SM, since they address the hierarchy problem, the
origin of the electroweak breaking mass scale [3].

In this letter, we will consider the minimal supersymmetric extension of the standard
model (MSSM) and, in particular, the Higgs sector in the MSSM. In the MSSM, at tree-
level, the lightest Higgs boson mass is predicted to be smaller that that of the Z {(Mz).
Since that would be the range of experiments at LEP-200 [4], a negative result from
LEP Higgs searches would apparently imply that the MSSM is excluded. Recently,
however, it has been demonstrated that radiative corrections in the MSSM can violate
the inequality M, < Mz (where My is the mass of the lightest Higgs), and thus there
is a possibility that the Higgs is out of the reach of LEP-200 and could only be seen by

the LHC or SSC.
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2. Radiatively corrected Higgs mass in the MSSM

m‘ ‘ . . !
Y WM:M mez“ mrw H.?m% sector contains two complex Higgs doublets H, = (HY H-
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surﬂmmfw_& 92 m:mrpwm gauge couplings of the SU(2) and U(l)y groups re
Msusy much larger than the electroweak breaki
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for its mass it is convenient to

H = cosBHY + sinGHY (2)

Here, t =
mmEmm bw% M:a Mmo\s w:?.S and vy are the vacuum expectation values (vevs) of the
(o P o7 2 Smmvmonwﬁ_%. H is the combination of Higgs fields m.on.cr.m:.m a vev
mmmm:mgﬁmﬂmw m = vy +v35)) and h = A%mtwmm contains the lightest CP-even Higgs
at tree level. The potential for H following eq. ( 1) may be written as j
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where

A= (1/4)(7 + 93) cos® 25 (4)

M. .
a
nd p? is a function of m2, m3, mZ, v; and v,.

So, we have the following minimization condition for eq

S St - 3 and expression for the
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We also have the other usual mass expressions given by:

1
2
My = M.dem

1
2

Mz = i+ (8)
ME = ho)y2 (9)

pplies in the case that the SUpersymme.-
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where i is the top-quark Yukawa coupling, and My, Mz, M, are W, 7, and top masses

respectively.

Using eqgs. ( 4), and ( 6)-( 9), one has the tree level inequality M, < Az following
from the relation M? = M2 cos? 28 which [5] is broken by radiative corrections. We turn
now to the inclusion of these radiative corrections. There is now a considerable amount
of work estimating these effects [ [8] to [20]], using several different methods. One
method is to use the effective potential approach (EPA)[8, 9, 10, 11, 14}, starting with
the potential as given by Coleman-Weinberg [6] and determining the second derivative of
this effective potential , calculated at the minimum, to estimate the physical masses for
the particles. In [13], a modified version of this technique was used explicitly introducing
wave-function and gauge coupling renormalization. { In the EPA, these effects were
approximately included by the appropriate choice of the renormalization scale). Both
approaches give numerically very similar results.

Another technique used in calculating the one-loop corrections is the so-called “di-
agrammatic” approach [5, 15, 16, 17, 18]. In this approach one works directly with
Feynman diagrams. Thus the physical masses are identified with the propagators poles,
according to the standard definition? whereas, in the EPA, they were associated with
the second derivatives of the effective potential. The approximation one makes, when
one uses the EPA instead of the more complete diagrammatic approach, corresponds to
neglecting the W-self-energy and to evaluating scalar self-energies at zero momentum
rather than on shell [18]. It has been found that the Higgs mass calculations made
with the EPA are a good approximation to the ones made with the more complete
diagrammatic approach, both for the neutral and charged cases [18].

Finally, the renormalisation group has been used [10, 19, 20] to sum the radiative
corrections involving the logs of the ratio of the supersymmetry breaking scale to the
Fermi scale [we will refer to this as the RG approach]. Since we are interested in this
paper in the case that this ratio and the associated logs are large we will use this
method in what follows. However, as we will discuss, it is essential correctly to include
the boundary conditions to the renormalisation group equations if the method is to
yield reliable results.

The starting point of thr RG approach is the effective potential, eq. (/3), but with
running mass p(t) and running coupling A(t) evaluated, via the RG equations, at the
field dependent scale £ = In(h/Q) (@Q is the renormalisation scale)[6].

Ves, = xw 2(t)h*(t) + w\/:z}: (10)

Here h(t) is the renormalized field
fy
h(t) = }.@HE(\ ——dt") (11
o V-7

where 7 is the anomalous dimension.

2 physical masses are, by definition, the zeroes of the real part of the inverse propagator
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Following a procedure similar to that of the case of the tree-
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procedure is to use the SUSY values for scales above the relevant SUSY mass threshold
and the non-SUSY ones below this threshold. Doing this introduces a dependence on

log(f(h)/Q) where Q may be chosen for above the SUSY scale and f(h) takes account:!
of the correct SUSY mass threshold. ‘;

Keeping now the h-dependence in both
eq. ( 12), must be modified to

i1

#*(h) and A(h) the minimization condition)

it

2, A1, I <
(dV/dh) = —p%h + 5~ 3h*(du?/dh) + 5 (dV/dh) =0 (15)"
and the second derivative is given by
(®V/dh*) = h3(d\/dh) - 2h(dp®/dh) — p?® + (3/2)AR2
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both equations evaluated at & — (h).

From eqs. ( 15) and ( 16)

above, we can see that the final expression for the Higgs.,
mass is .
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Vi(Q) = Vo(Q) + AV(Q) (18)
where [7, 6] w3 @
AV(Q) = %_1 StrM*(log( g7 = 3) (19)

1 = ~U m q mmz an
s__wnﬁ gg 18 ﬁ?@ *.—O—Q &0 ®=Q®:ﬂ_ ener N.——NQA_ 8 :m—®A_ mass matrix _:_ :_0 (ﬂ
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Strf(M?) =Y (—~1)%:(24i + D f(mi) (20)

i f the i-th particle of spin-j;.
2 field-dependent mass eigenvalue o ] ;
sroﬁna i MPMMo SM are Momsm to consider only the loops involving chnrm w.ﬂw MM:”WM
1 HM%m__Msmm mh~<o_<.5m Higgs and Higgsinos . So, the one-loop correction w1 g
plus

by:
3

1672
1

3272
h 2 = p2R2/2, m? = (—pd + (3/2)Aoh?) and Miusy is the supersymmetry-
where m? = h; ’ [
breaking contribution to scalar masses.

It be seen from eq. ( 21) that one cannot ignore the mmE aowgam:n.a ESOnM”MMM
by t} “ﬂwanmwgamalo loops. For example, the second term in eq. (21) gives a
h
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3 )¢ and po are the tree-level value for these quantities
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these contributions). The remaining h dependence in #3(t) and A(2) is calculateq:
the RG eqgs. below the SUSY threshold with boundary conditions at Musy.

To see how this procedure works more explicitly, remember that we are moEm
be interested in the case where M2, is > m2 or m2. In this limit, after wes)

&

form:

3
T (In(M2,,, /@) + 2m*

+ MSwguw:u@~§A§um=u@\©mV + E«N:Z\Sm + E.MMQNSQ—\N.W:Q\@NVV

-1 14 2 2 4
+ 3972 As Qﬁmgﬂsue\@ vv + 2m

fl

AV(Q)
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To determine the large logs below the SUSY threshold we may set Q* = M2 . From

susy- pbl
eq. ( 22) one can now see that the terms that will be relevant if one wants to conside}
the threshold effects discussed above are: ;,

AV(Q) = awm (2m*) — wmw S(2m™) + .. ,@

Ve

'y

from which the above mentioned non-suppressed contribution to p2(t) comes.
From eq. ( 23), we have

1 = uf — (3h#h?/1672) + (932 /64x2) (24)

Since we have now taken care of the threshold effects connecting the SUSY and
the non-SUSY regimes, we are at the stage of applying the RGE in order to evolve
the quantities in the expressions above to the desired scales.
quantities is governed by

The evolution of these

v

d»  p
dt 1672
dh, M
dt 1672
dg; g
U T Teeti=123)
where §*"¢ are the standard model G-functions given by [12]
91 2
BY = 1207 - (3¢7 1 9g2 — 12h2)) + 2(391 + 39363 + g3) ~ 12}
9 17 9
g = \immw - mnw # me +893)]
20 1
P = Q*l@l?ﬁ + wv .
4 43 b
B = &@2@ - %) o
4 o
£ = 6(3Ne-11) (26)

disregarded the negligibly small terms, eq. ( 21) above can be put in the mozossw.
#
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Fig. 1 The relation of My to M, for different values of no%%m ﬂzm Mo_. %MM:MMG vwmmmwm mw_wﬁm&
. irs of curves are displayed.
= V(b). In each figure two pairs o D !
WMWMMMN NQHWHM Emmv the bottom one is related to cos” 28 = 0. In each wﬁ ;Mmm %w:.m“ the uppe
dotted curve is the one obtained by considering the h-dependence of A and u~.

Ng is the number of generations. . N
i_m%m %<o eq. ( 25) above, one has to provide 5 boundary conditions. We have used,
0 50 .

at Mz = 91.177 [1, 21].

ap'(Mz)=1279 (27)
sin? fw (Mz) = 0.230 (28)
ay(Mz) = 0.12 (29)

d
) MMyusy) = MEWQE,:;& ot .QWA:.EQV_ nO%QE (30)
\fﬁsav”/\Msﬁ\d Awwv
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Fig. 2. i
&%ﬂmbm HMMMM_MM_MM of w&: to Mousy for cos? 28 = 0, (a) and cos® 24 = 1, (b) and for three
e ent valu . mnmwﬂ W mm(”“r mmm_wm. we see three pairs of curves, the upper one is for the
top = eV, the middle one is related to th ; nd,

oy e Mo ( ed to the case where M,,, = 140GeV
moimw n:wﬁommnwm.wwww _M"Omwﬁ SH omﬂw \S BM = 100GeV. Again, in each pair oﬂ M:?mm nrﬂ zwwmh
esuits obtained when one considers the h-d ‘ n
-dependence of A and p.

where msmﬂM sin? @y and o
vmmm:.gmﬁan and strong coupling constant res
equations in order to determine the
to determine the full radiative corr

pectively. We have numerically solved these
parameters at the minimum and then used eq. (17)
ections to the Higgs mass.

3. Results and Conclusions

ar@”)wﬂw M\Mw.wnnm of the threshold corrections is to make the Higgs masses somewhat larger
e Fomuowwwm %romﬂ the o_w_o:_mSo: is performed disregarding the h-dependence omw.
. - la, 1b we plot the results for th
: n . e case where M,,,,, =
cos?(24) = 1,0, and M5y is the mass of the stop-quark. Note L tangd

: b th imi
the Higgs mass is given by the case where cos?(26) = 1. We can Mﬁﬁ%ﬁﬁ _:m_; MM
" Ve ese figu

are the fine structure constant, the electroweak Eccc_m
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that, as M, gets bigger, the curves for the different values of cos?(28) tend to approach
each other. This is so because, in this region, the renormalization effects dominate the
initial conditions. In Figs. 2a, 2b we plot the cases corresponding to cos?(28) = 0,1,
and M, = 100, 140,180 for M,ysy varying from 103 to 10% GeV.

From Fig. 1, we can see that the bigger the value for My, the bigger the correction
caused by the consideration of the h-dependence in A and in p?. From Fig. 2, one sees
{hat, for the same value for My, and My, the bigger the value of cos?(283), the smaller
(the percentage in relation to the uncorrected value) the correction one finds.

Before we conclude, we would like to point out that our concern about taking care of
the neglected terms mentioned above is a general one. Using [15] as an example of the
more complete diagrammatic approach, one can, after careful examination, realize that,
in order to obtain the results contained there, one has to use the identity m? = wswm
(notation of {15]). And that means® using the minimization condition disregarding the
h-dependence of the parameters in the potential thus falling in the same situation as
we have described above, where some terms have been neglected.

To summarize, we have used RG techniques to resum the large radiative logarithmic
corrections to Higgs masses which occur when the scale of supersymmetry breaking is
far above the electroweak breaking scale. We have showed that if one uses this method it
is not sufficient to start the RG evolution below the supersymmetry breaking scale and
have derived a straightforward modification of the RG method to include the additional
terms which occur from radiative corrections involving virtual SUSY states which couple
to the Higgs scalar. The resulting corrections are in the range (2-8) Gev for the range
of values for the mass of the top quark suggested by present results [22], and depend

sensitively on the top quarks mass.
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