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Starting from an effective NJL-type quark interaction we have derived an effective
meson action for the pseudoscalar sector. The vector and axial-vector degrees
of freedom have been integrated out, applying the static equations of motion.
As the results we have found a (reduced) pseudoscalar meson Lagrangian of the
Gasser-Leutwyler type with modified structure coefficients L;. This method has
been also used to construct the reduced weak and electromagnetic-weak currents.
The application of the reduced Lagrangian and currents has been considered in
physical processes. :

1. Introduction

A renewal of interest in chiral Lagrangian theory was excited by recent progress in the -
construction of realistic effective chiral meson Lagrangians including higher order deriva-
tive terms as well as the gauge Wess-Zumino term from low-energy approximations of
QCD. The program of bosonization of QCD, which was started about 20 years ago, in
the strong sense is of course also beyond our present possibilities. Nevertheless there is
some success related to the application of functional methods to QCD-motivated effec-
tive quark models [1]-[7] which are extensions of the well-known Nambu—Jona-Lasinio
(NJL) model [8]. These functional methods can be applied also to the bosonization of
the effective four-quark nonleptonic weak and electromagnetic-weak interactions with
strangeness change |AS] = 1 by using the generating functional for Green functions of
quark currents introduced in {9], {10].

The NJL model, which we consider in this paper, incorporates not only all relevant
symmetries of the quark flavour dynamics of low-energy QCD, but also offers a simple
scheme of the spontaneous breakdown of chiral symmetry arising from the explicit
symmetry breaking terms due to the quark masses. In this scheme the current quarks
transit into constituent ones due to the appearance of a nonvanishing quark condensate,

1Talk at Workshop on Chiral Perturbation Theory, Bratislava, September 5-10, 1994.
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and light composite pseudoscalar N ambu-Goldstone bosons emerge accompanied alsg m% :
heavier dynamical vector and axial-vector mesons with correct relative weights mammnm;
L .Js R

from renormalization.

Independently from the method of including the vector and axial-vector fields in the

effective chiral Lagrangian, integrating out the vector and axial-vector meson resonanceg
essentially modifies the coupling constants of the pseudoscalar low-energy interactions,

In particular, in refs.[11], [12] it was shown that the structure constants L; of the Qmmmﬂ_r A
Leutwyler general expression for the O(p*) pseudoscalar Lagrangian [13] are largely
saturated by the resonance exchange contributions giving a product of terms of O(p?).

But in this case, if the O(p*) Lagrangian contains meson resonances, their elimination
can lead to the double counting mentioned in ref.[11]. The resonance contributions to
the purely pseudoscalar chiral weak Lagrangian and the modification of its structure,
induced by integrating out the heavy meson exchanges, were discussed in ref.[14].

In this work we consider the effective nonlinear Lagrangian for pseudoscalar mesons

which arises after integrating out the explicit vector and axial-vector resonances in the
generating functional of the bosonized NJI, model. To perform such integration we use
a method based on the invariance of the modulus of the quark determinant under a
chiral transformations and on the application of the static equations of motion to a spe-
[clal configuration of the chiral rotated fields. The elimination of vector and axial-vector
‘degrees of freedom from the modulus of the quark determinant leads to a modification
of the general structure of the effective strong Lagrangian for the pseudoscalar sector at
O(p*) and to a redefinition of the corresponding Gasser-Leutwyler structure coefficients
L;. This method of reduction of meson resonances can be extended to the procedure
{10] of chiral bosonization of weak and electromagnetic-weak currents and can be used
for obtaining the corresponding reduced meson currents entering to the bosonized non-
leptonic weak Lagrangians. In such approximation the problem of double counting mo.m.w,
not arise. The effect of 7 A;-mixing, being most important for the description of mmm
diative weak decays, is taken into account by the corresponding 7A;-diagonalization
factor. _

In Section 2 we discuss the basic formalism and display all definitions and constant

related to the bosonization of quarks in NJL model. In Section 3 we consider .ﬁrm
static equations of motion for chiral rotated collective meson fields in unitary gauge,
Applying these equations of motion we eliminate the heavy meson resonances from ﬂ__m
modulus of the quark determinant and obtain in such a way the effective pseudoscalar
strong Lagrangian with reduced vector and axial-vector degrees of freedom. The reduced
pseudoscalar (V —A4) and (S—P) currents corresponding to the respective quark currents
and quark densities are obtained in Section 4. In Section 5 we discuss the results of
some numerical estimations and phenomenological analysis of the structure nozmﬁw:mw
for the reduced strong Lagrangian and currents. )

2. Bosonization of the NJL model

The starting point of our consideration .mm the NJL Lagrangian of the effective four-
quark interaction which has the form [8]:

Lwnsr = 7(i8 — mo)g + Ling (1)
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with

)@ 2 a 2 )¢ 2 o a VNW
-— 8. m o _ o, t - I—I o, o .
Lint = MQ%QM v + TS 3 v W MQ%?Q 2 v AS 73
i i tants; mp = diag(m}, m3, ..., m}) is
G and G4 are some universal coupling cons ; mo = dia s
w_mmnﬂzahm:ﬂ quark mass matrix (summation over repeated E%amm. is m.wmcgw&m and A
re the generators of the SU(n) flavour group normalized wﬁnoﬁ_zm to trA v, = 26,p.
wm:ﬂm a standard quark bosonization approach based on v@ﬂ_ integral .nonrn:n:mm one
can derive an effective meson action from the NJL Lagrangian (1). First one rmm. n_o
introduce collective fields for the scalar (S), vmm:mwmnm_g qu.‘ vector (V) and axial-
vector (A) colorless mesons associated to the following quark bilinears:
a ¢ ] B . _ 5 A0
S§* = I»Q&.\Wn" P* = IAQ@JmM? Vy = i4Gagyy XL A} = 4G,y .
After substituting these expressions into Ly the interaction part of the hmm_.wnmm.m?_w
of Yukawa form. The part of Ly ;7 which is bilinear in the quark fields can be rewritten

a a

® L =giDgq
with D being the Dirac operator:
iD=i(d+V + Av°") — Pro — PL®! = [i(§ + Ar) — ®|Pr + [i(5 + AL) — 91} PL. (2)

Here ® = S+iP, V = Vav?, A= Auv*; Pryr = wC + v5) are chiral projectors;
Aprsr = V + A are right and left combinations of fields, and
a 2 ) nv—a B ) ax/la
S = .mév,w, P= Waw“ Vy= =iV}, EX Ay = —iA3 5

are the matrix-valued collective fields. . , ‘
After integration over quark fields the generating functional, corresponding to the

effective action of the NJL model for collective meson fields, can be presented in the

following form:

Z= \ DI DI DV DA exp[iS(9,81,V, A)], (3)

where
H sy A7) =i gD
%Ae_ﬁﬁﬂkv”\a&aﬁlmmﬂh:@lq:oﬁﬁelio:lAQMSC\: +\_:VH_ i T [log(:iD)]

@
is the effective action for scalar, pseudoscalar, vector and .mxmm_.émn.ﬁon mesons. The mwmm
term in (4), quadratic in meson fields, arises from the _Eomzs.mﬁ._os of ﬂ._o mocTﬁcgw
interaction . The second term is the quark determinant &omo:_u_:m. the _smowwOfo: ﬁ_vg
mesons. The trace Tr' is to be understood as a space-time integration and a “norma
trace over Dirac, color and flavor indices:

‘HIHA\&AH.HT Tr = try -trc - try .
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The quark determinant can be evaluated either by expansion in quark loops or by th
:mm&-rmgﬂ technique with proper-time regularization [15], [16]. Then, the real ?WZ M
_omm.mmn s..Uv contributes to the non-anomalous part of the effective Lagrangian Sr.%
ﬁra. Imaginary part of it gives the anomalous effective Lagrangian of Wess and Zu e
which is related to chiral anomaljes [17]. EEw
The modulus of the quark determinant is presented in the heat-kernel method mm

the expansion over the so-called Seeley-deWitt coefficients hy:

~om_mo:._w_ =_

L L(k —2,p42/A%)
Mﬁim M pzk Tr'hy,

where

" The effective meson Lagrangians in terms of collective fields can be obtained from
:Qw o:mnwﬁummnmﬂgwmwn after calculating in tr'h;(z) the trace over Dirac indices. The
tvergent” part of the effective meson Lagran ian is defined b i . !

; t
and hy of the expansion (5): srne Y the coeficients o F

c Ve p? 1
iv = t — )
: 1672 _)Ao, A7) DI Duet - M Sm%imwvwv
2 =
+ 2|AZe#AT _ ap(g B
’ g a?% My, ®)

- 2. ) .
where M = ¢t — ©°; D* and D, are covariant derivatives defined by

Dt*H%t*.TT»w*!*\»MJ“ bt*H%:*._.Amw*l*kwv, (7)

and
Pt = 0,00 _ g, 4R/t [ARIL gR/L)

are field-strength tensors.
4 : R
i .Hr% .M -ao.Mdm o:rm finite part of the effective Lagrangian arise from the coefficients
an . i i i
tW\>m AA»C : ssuming the approximation :th.\\é = ['(k) (valid for & > 1, Eﬁ
fi€ can present this part of the effective meson Lagrangian in the form

x 2 M.
h:.vH n. i~ lem» l M_ l
fin om0 :*w p D7 DT — (DEG bneﬁv W + WAbtebceJm
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- W(MD,®D" "ot + MD,o'D,o)

p) ey - v I ’
+ g0t (Do D el BL + D el DYa L) + SHFROTFE g

v

- sy ey}, 0

where M = ®1@ — 12
We will consider a nonlinear parameterization of chiral symmetry corresponding to

the following representation of @:
P=0Q%Q,

where X(z) is the matrix of scalar fields belonging to the diagonal flavor group while
matrix () represents the pseudoscalar degrees of freedom ¢ living in the coset space
U(n)r xU(n)r/Uy(n), which can be parameterized by the unitary matrix

A0) =exp (oe(@)) L o@) =" (0)

with Fy being the bare 7 decay constant. Under chiral rotations
q—q=(PréL + Prér)q
the fields ® and \»m\h are transformed as
@ — & =£,06h
and
bw - Mw =Er(Op + Vi + \»:vmr“ }w — Nw_ =&0(0 + V- }me. 9)

For the unitary gauge mw = £r = {2 the rotated Dirac operator (2) gets the form

iD — iD = (PLQ + PROND(PLQ + PrOY) = i(6+ V + Ays) — T (10)

It is worth noting that under local U (n) x Ur(n) transformations the modulus of the
quark determinant is invariant, while the quadratic terms of V., Ay, and the chiral

anomaly do not respect this invariance.
Taking into account the equations of motion for nonrotated scalar and pseudoscalar

meson fields in nonlinear parameterization one can reproduce from (4) and eqgs.(6,8)
the following general expression of the effective meson Lagrangian including p*- and
p*-interactions:

Fg Fg

(non—-red) __ 20 t
Loy = —un(LL¥) + (MU + UTM)
A\

1 1
* Ay - |sv (rL,l*)’ + 5:@5_ L+ (L L)? )

2 y
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o Latr((LuL¥)?) = Late(L,L%) (MU + UM

~ Lstr[L,L*(MUT 4 UMN] + Lg ?ES + Ssiw

+ Lo (te(Mut - um')) C ¥ Lote(MUT AU 4 UMtU Mt
= Lotr(FERrR 4 FR, LML) = Ligtr ?quwnsv

- e ((EE)" + (P)") 4 raenrart ay

where the dimensionless structure ]
. constants L;(i = 1,...,10) and H, 5 were int
by Gasser and Leutwyler in ref. [13]. Here we use nrm_ notations e iroduced

- 02 .
U=9*; L,=puut Ry=U'D,U ; F2=  Net?

with B

y= r Oq 2 >M : M = di 2 2 2 ) 1
A M \ v Qmw\mAX:uvﬂ&“ ....N:v. XW = Sct\ﬁmuﬁ%v = IMSMA@.QVN&Q!NW

I < QQ > Tm:ﬂm HTO AMENHW Ooaﬁm@zmpn .
a, Q € gOHQOCQH‘ ﬁm.n@ OO@:..MA;@EHM N\s @HHQ N&N 2 are

N,
L, = L |
1672 12 16726’
N,
Ls = —Say—1), f,=_ el 1
HQH.N v« 7 H@ﬂﬂw @ Yy — .H'Ml y
N, 1
Ly = e |(2,._ 2 1 N 1
e (G I R
hpo = l\<n h—., Lm?”l >\n|~. 1
ﬁ@ﬂ.m@ .._.ms.mm "Ml 3
\<« b
H = e - 2 1
2 1672 Ta.rw& vwlmgy (12)

where z = ~uFZ/(2 <qq>).

\HA . - ,,
mooocwme NMao:ﬁ ?oznwm:nomv Lagrangian for the pseudoscalar sector, taking also into
) e ma.am_o: of the “structural” photons A, can be obtained from (11) when
@.Mmml.h " H% 0 in the covariant derivatives and when the tensor Em\ Lis replaced by

‘ Ay M v Au). In the following section we will discuss the reduced nonlinear La-
grangian for pseudoscalar fields, which arises from generating fun

tegrating out the vector and axial. 3 tunctional (3) after in-
determinact axial-vector degrees of freedom in the modulus of quark

3. Strong Lagrangians with reduced vector and axial-vector fields

prmn%mrwmlo:: the integration over vector and axial-vector fields we will use the fact
¢ modulus of quark determinant is invariant under chiral rotations Then, the
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%m:@Omo&wn fields can be eliminated from the modulus of quark determinant in the
effective action (4) by using the rotated Dirac operator (10) for unitary gauge. After
such transformation the pseudoscalar degrees of freedom still remain in the mass term
of eq.(4), quadratic in meson fields, which are not invariant under chiral rotations. Since
the masses of the vector and axial-vector mesons are large compared to the pion mass
it is possible to integrate out the rotated fields V, and A, (9) in the effective meson
action using the equations of motion which arise from the mass terms of the effective
action (4) in the static limit [18]. In such an approximation the kinetic terms AWM\:\ 2
for the rotated fields «1\: and \wr as well as higher order derivative nonanomalous and

Wess-Zumino terms are treated as a perturbation.
In terms of the rotated fields V,, A, (9) the quadratic part of the effective action

(4) leads to the Lagrangian

Fg my, s 2, (F 2
Lo = M:S.Q_\NQ +he)— o be[(Vy — vu)? + (4, ~ a,)Y], (13)
v
where (mY,/g¥,)? = 1/(4G2), with m$, and g% being the bare mass and coupling con-

stant of the vector gauge field, and
1 1
v, = M?@_Q n Q@bv‘ a, = m?th - 219,9).

The modulus of quark determinant contributes to divergent and finite parts of the
effective meson Lagrangian. In terms of the rotated fields, taking into account that for
unitary gauge ® — X, the divergent part of the quark determinant (6) gives

m_ow mam szw zhw
h&.e“ A't&?. l%t \»t.TW.:WE\V +A%..t=v _ ’ ATC

where the approximation ¥ = y was used. The p*-terms of the finite part of the effective
meson Lagrangians (8) are of the form

Cg»v _ >\a il MI)‘ Mlm? GviL R
h.\«.: - MMQ_.MHHA:\\Shtu_ +wﬂkﬁt\»_\v w.\&t\» ﬁmuttl_vmﬂttv
loporw 10 .
+ IR :&Q@Niﬁvi. (15)

The kinetic terms Amnw\th arising from the sum of Lagrangians (14) and (15), lead

to the standard form after rescaling the rotated nonphysical vector and axial-vector
fields V,, A,:

V. = |IQ@||QGS A . = llmoKllNQS (16)
TS EC N (e R

Here

o | Ne m%mﬁ% 1 - ~ 2%@@% (17
W= [igei\ W2 7= gt )
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and W%:;“ vai are the physical fields of vector and axial-vector mesons with Masgseg

0\2 042
"2 ?:\v 2 _ (my) ~2 s
m, = 145 My, = _lw(Nh s ﬁmv

where NM =1- Aﬁcbm\\ﬁm\

|
Since in the following we ajso want to investigate the radiative processes with “struc.

vumSmmSmEcsm ones, it is necessary
sonization proceduyre. Obviously, ussum_.
oupling one then simply has to use the 8@585@?

f ntieaA,Q, where Q is the matrix of electric
quark charges and 4
Alphy _ v Auy o) = (1+75)t/2
g g 9V

mnmnrmvr%mmo& electromagnetic field and charge respectively.
The static equations of motion arise from variation the mass terms of €q.(13) in

chiral limit over rotated fields Vi, A, and lead to the relations

V, = v, A, =22 a(y) (19)
and
FRIE = (g4 DIE?, 0l + ie0QFE) + ieo(a, [0, o] - 4,[Q, o))
+ N,mcww_itELE1?6.%5. (20)
Here

1 1 1
v = 5 ?&iQ + Q@Q@Y alr = m?&?& - Q&Sv = ;m@w&:?
W =0,k tieo A, [Q 4] = 9, +iePh AT [, 4]
ing the emission of the inner gmgmmimr?:m ph

strength tensor ) ~ A, — 3,4,
m?:v.ﬁmw%ivw and hvi = A%MdQVQ*. Further, we will omit for simplicity the upper
indices (7) corresponding to the inner Em:@mmﬁwr_::m photon and only tensors .ﬁmwv

will be kept explicitly. We wij] also omit everywhere the upper indices {ph) assuming

is the prolonged derivative describ-
oton while the electromagnetic field

corresponds to the structural photon ?o.ﬂmwv =

9) to the terms of the effective actions (13,14),
» one reproduces the standard kinetic term for

\ﬂw
Liin = — %EFZV‘ (21)
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same way ep- C ns
e € a, &: terms A& :—0 actions A _%, _.vv Awm; to A._—m ~®Q=O~u; rmm-m:m~@
—: ﬁT

for pseudoscalar mesons of the types

%:énWMM:AF:ENV+amm+muv:?tb%v
- wmm:?\bimmimwv - Maﬂ%mw:@mwiimmv
— o) Luotr[A2 (Q€hLoér QR L ER — Q¢Litn)
— A (QERL#€R QERL Er — QR L76R)] (22)

1 1 - P m@ﬁmos
ﬁ::OwNVCBA:: to A:G ®_ O.A‘:\0 p _\m ranglan in ‘__O.Awmhm®~ _ eutw —®~. represen
E—HT ﬁrm structure Oomaﬂmmzﬁm N\s. Qmmsmﬁw Uv\ ﬁme ~®—N‘ﬁ—o—\~m«

67 1+5 4
- N, 1 la 4 s —%alls
Bo= [m et o(@ - 05 g
672 145 4
- N 1 1 4 4 -1 —_— N> s
Is = _wwﬁagly
T
145
E \<<a 1 4 4 s Am —= 1,
bo = Tomr (374~ -V @y
- g 1147 (23)
Ly = - >AQ$M‘
where 1+5 B lm,l%l.
(99)2  6u?

4. Reduced currents

ep -1n m 1 —@ﬁﬁﬂoam\m
_—_ m‘—_ ~. tegra .N € _Um N.UU:@& to ﬁT@ SO@—f an
_ _U0m0=~ ation m ﬂrom can " .nm €
netic - S@@W currents Uw :mmzm a mw:wﬁmﬁwﬂpm AH:HOA ~C5W.~ nOm. m.;d—,mwm: :hz.OA ons Cm. QENHW
ﬁ::M— ts 1 t OA—COGQ :,— @u N:Q HO . }?@ﬂ r—.@:mwﬁmoﬂw to AO__QOS,\@ :®~Qm in mzﬁ_— a mm.W>_—Aw~.\
mir

m WC:OGWOBW_ _L—,_m —W.AH T mm Q@H@HE—ﬂ@Q _U% ATO WSN\TVm C— ﬁom EC_W Amv ccrm— € now NU 18

al H:\_ €

replaced by
iD(n) = [i(3+ Ar —ifir) — (® +mg — nr)| Pr y
+[i (@ + AL — i) — (®F +mo — 1)) Py . (24)

A® | sources coupling to the

. A° = n¢ o5 are the externa

Here . r = 1R, % and R U, 2o AS spectively. The quark den-
ark currents P, p7* uwmq and quark densities 71, p 5-¢ resp tors Of the offective

n._m_u: aomm:m the contributions of the vm:miz-ﬁwm four-quark mﬂcmaﬁ r,mo: i

., _m_m tonic weak Lagrangian [19] to the matrix elements of relevan 3

nonleptonic L :
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bosonized (V & A4) and (S ¥ P) meson currents, correspondin
mﬁ?m&:%e and quark densities ﬁun.k»%? can be obtained b
terminant with redefined Dirac operator (24) over the extern
these quark bilinears [10].

For further discussions it is con
Mmagnetic-weak (V — A)-current for
Lagrangian (11) and including the e}

g to the quark Currepgg
y varying the quark de.
al sources coupling with

pseudoscalar sector, generated by the nonreduceq

ectromagnetic-weak structural photon @::mmmc:v in
the form: A
_ F?
| s ittr(xeL,)

. :%1 m? {(MUt + UMy, Ly} + RyL, L, L”
+ Re{Lu,L,L"} + Ry, (L, Sv:
+ %%s?im&@&+:§>2v+5%€@§; (25)

Here, the first term is the kinetic current and all other terms originate from the p*-part
of Lagrangian (11); R; are the structure coefficients:

Ry =Ly, Ry =2L,, Ry =20y + L,

1 1
Ry = —5ls, Rs= oles Re=Ly. (26)

The bosonized (S~ P) current for pseudoscalar sector, generated by the Lagrangian
(11) and including the structuraj photons, has the form:

nglﬂa&vs .TJow a ar?
Jy = nﬂtmﬁ? U) + uRG tr(A thv , (27)
where R = —1/(2z) and G, = —Ls.

Here, the first term is generated at p2-level by
mass terms of Lagrangian (11).

2
I = ﬁ.mlo:CamL ,

which arises from the terms of effective actions (13,14), quadratic in vector and axial-
vector rotated fields, after redefinition of the rotated fields

Vi =7, - ((€eneu€l + Ernruel), A, - A+ 1Eenrut] ~ Epnryel),

and variation over MLy with applying the static equations of motjon.

- .. Anm
( v :~® ~®Q:A ON‘ N O. N\. ~ 1
In tion vector n_:l axial-vector fie LV

_ »~ e to ﬁ— e 4_ SN _ :_ the 0‘ ective action we m—m:
> :—m 1€ same p oce P {. S A UV T C
_._. y T Q—L:. 1
D_vnm:_ :—0 —UOmC_:NOQ. c(@N.W P—‘nﬁm O—@Oﬁﬁogpmﬂpwﬁ—nl cemm\wm Av - \wv currents mo~ @m@ﬂaomnp—gm
or W1 T r QCO ﬁ_. ctor W\—JQ a. N._.l m -
t the re € vecto X1 vector Q@ rees C_ _OQA_C:— : 15 convenlent to
mmhﬁ

esent these reduced currents in the form:
pr
(p*,red)a = N\MH&HAV&AMNEMWTH\twv

: R 1 v t
’ it0{ 3 [RaLo Ly LY + Ra{Ly Lo L'} + Rard (€RlLw, L Jer)ek] }
mnr 24y Loy
X (28)
+ 20§ Rtr (A [€rQER: L 1),
1 eters
i iated with the corresponding param
R; bei ture coefficients, associa
with R; being the struc

R; of the representation (25):
~ N:. 1

- _ ~Z%z(y— 1),
Ry, = 2 9“4 ~
1 >W?_.Hw \ :Si »+4v
4 — E ’

Ry = T6+% 12 Za AN\, +1-(Z4 N. (9v)?

| N 1 4 4 :Ei :‘mv
- 1=~ c —(Z4 — 032 /°
Ry = mwa = T 1672 24 Za AH (Z4 N. (9v)
Rs = —-—— —2Z3(1- 02/
Rs = 1672 12 N. (gv

HTCmv HTO H@QCOALQH— O* Hrw vector @—HQ NLUN\# vector *.—w—gm @Dwm not U:m\:mw :—m wzmﬂwﬁww
term Om ﬂro UOmo=~N®Q Am\ - \Qv O=H~®=ﬁ ccr——m ﬁrﬁ structure Om ﬁ_ww D |@@Hﬁ Om. Av = kv

i i are (25) and (28)). . N
o::m:.e N HBMMMMM@MMM&@MMMM%:3 Mm ref.[10] and the equations of motion (19) w
sing the

OU&N\:— mﬂmc :-@ red —: OA_ w - ~ meson Au:nmm:ﬁm. >m.ﬂ®_ mmamm.::ﬁmo: Om MOW_N\H :mwrwm
v
C A

30)
tont — 2yl (
Lo N -2nety, X' o X - 2rmé;

. E ¥ t ﬂv rt
m._:_ variation over S::— NT—. v\ m (5] 1 € tions m. motion ﬁT@ Q~ OH@@—J
1 1 N 1 ~ n HT. static @:P o ] ot C. \Y art
1 ﬂ.oz AH%V N\;& ﬁ#ﬂ@ *,.—Hw:um vah.n O% 4—90 mm.GAuA:\@ action A“—.mv w@pnw to »:@
Om ﬁrm 0m®0n~<0 actl

scalar current

~ ar2 31
%Aﬂm&vn — N@thNMwﬂﬂAprv + ENNMQZHAY N\EQV A v
L T4
with - N, _ wmmv )
Qw = - H@ﬁ.w.\n 4 4

ial-vector fields does
1 f the vector and axial-vec | o
; i n that the reduction o . felds coes
e mmm__m\ mrw% results for matrix elements of the vOmoﬂEom m_Mwonmhzr o
e F.m P trom the product of scalar currents generated .«\a he diesgent pat
of the effoctive 5 Mm,o:_ In mﬂg both for the reduced and for nonreduce e
of the effective action. .
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Fig.1. MARK-II [34] cross section data for ¥y = xt 1~ for CMS production angles |cost] < 0.6,
The experimental points in the region mn. <0.5 GeV were only included in the analysis. The

dotted line shows the QED Born contribution; the dashed and dash-dotted lines show }o

results of the successive inclusion of p*-contributions and one-loop corrections. Both lines are
calculated with (I, + Lio) = 4.2. 1073

» corresponding to the fit of the total cross mmn_“mmw
data together with the parameters of Table 1. The solid line corresponds to the direct fit of

the experimental points for m,, <0.5 GeV without including the experimental parameters of /

Table 1. b ;

- . - - . .vva..
corresponding contributions to the penguin operator matrix element can be presented
effectively in the same form:

mu»
Aﬂ@%&VRI %m <(8,U 8*Ut)p3 > .
On the other hand the structure of the pseudoscalar meson (S = P) current mozammmmm
by finit

lte part of the effective action proves to be strongly modified by the reduction of
the vector and axial-vector fields.

:.«%&HK

5. Numerical estimates

To discuss some physical consequences for pseudoscalar nonet of mesons we have
to fix initially the numerical values of the various parameters entering in the reduced:
Lagrangian and currents. The parameters x? can be fixed by the spectrum of pseu-

doscalar mesons. Here we use the values x2 = 0.0114Gev?, X3 = 0.025GeV?, and
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2 = 0.47GeV2. To fix other empirical constants of our model we will use the oﬁ_u.mn-
- ental parameters, listed in Table 1: the masses of p- and \wTE.mmo:m, the coup ing
e t of the p — wm decay , the mr-scattering lengths Eﬁ the pion &mnioawmcoﬁo
%P#mw radii <r?,, >+ and pion polarizability a,+. We also include in our w:.w_%m_m
mmcﬂnmﬁm on the qw31=a+2| cross section near to the threshold (see Fig.1). We will use
M&M relations (17), (18), gv = g% (1 +%)"1/2 and

m?2 N, - 232
P c 4 — S
Gprn = gv _“H,T WINUIOMAAWQ_.N Nb M&tmN\— A~ N\—v

The ww-scattering lengths are defined by the structure oOWmmommwnm h.w and Lj. .m,ow
am-scattering lengths a} (indices I and [ refer here to the 1sotopic spin and orbital
momentum, respectively) in one-loop approximation we obtained [20]

ad = m&én&?mgﬂiimiciqlm%ii5_u
a = nmsw:wgwaJéLaﬁrii,

al = m§+m&wTim:zrweNaT&“

o = WQM HWAQ+ASIMAW+§|MQ+@|%+M+wv "
@ = WQ&WASS:wTLﬁﬁwm:mﬂ%iig.

?o6=3(1- ith 3 being the parameter of chiral symme-
Here ay = w?f\ﬁw#muovv ; 6=3(1-7), wi g
try _uwomrgm which takes here the value 8 =1/2;a = 21{(1-6) and b = (1162 —156+3).
The parameters

A= \Am +\»~eeﬁ B = mm + WF«%, C = Qm +Q~oow, D= @m 4 b?ow
include in themselves the Born contributions
AP = _1447*(L,-Ls), BP = —5762’Ls, CP =516a%(Ep+Ls), DP = 5762%,

and the pion-loop contributions calculated, using the superpropagator method [21], in
ref.[22]: N
AP = —15, Bl*P=3, (Cl"P=55 plor=q

The electromagnetic squared radius of the pion is defined as the coefficient of the
¢*-expansion of the electromagnetic form factor f&™(g?):

< w(p)Vim m(p1) >= fE™(4*)(p1 — pa)a,
1

FM@) =14 g <tk veg
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Table 1. Physical input parameters used for the fixing of the empirical constants of the mod
10,

g@:a parameters Experiment Theory
mg TIOMeV T12MeV
ma, 1260MeV 1160MeV
Jomr 6.3 6.8
nm Mg 0.23 £0.05 [23] 0.20
ag - mq —0.05 + 0.03 [23] ~0.04
af - my 0.036 £ 0.010 [23] 0.038
a - my (17£3) - 107 [24] 17-107*
a3 -m (1.343)-107* [24] 2-107*
<l >4 (0.439 £ 0.030) frm” [25] 0.53fm?
ot (6.8 1.4) - 10~ fm® [26] | 8.0-10~% fm? )

Being restricted only by pion loops, one gets in the SP-regularization the corresponding -

contribution to the electromagnetic squared radius [27]:

My

Mq_..TJc

1
<r? SUoor) - 3¢ +1n (

2
AL ) - L = 0.062fm?

where C = 0.577 is the Euler constant. Because the main contribution to this value

anses from the logarithmic term, the kaon loop contribution, which contains the small .

) 2
logarithm In AQN\Amaﬁovv , can be neglected. At the Born level, the contribution to

the pion electromagnetic squared radius originates from the Lo-term of the reduced

Lagrangian (22):

Bor 12 ~
Aﬁwﬁvmﬂxve :VH W_Mho vk
0

tude:
< ME)TP)IS 1 (0)700(02) >= Ti(pi2 | 919) + Ta(p1p2la1gs),

NJHTE - memw_m.v\,u A.Qt_\ _ @%Em _ ﬁm\ﬁwv MJAOV = s
na pq) T

—
1y = m»-mwu AAQHQNV.Q.E\ - Q:thv\QAQ_QMV,

%rm% B(g1¢2) is the so-called dynamical polarizability function. Defining the polar-
izability of a meson as the coefficient of the effective interaction with the external -

electromagnetic field

one obtains

The pion polarizability can be determined through the Compton-scattering ampli- -
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The pion-loops give the finite contributions without U'V-divergences:

m Am | w » ~ mm m
Qoeﬁv Q | m%eﬁv “l!'n —— Sx
bt = gropg Aﬂ 35, VEL I pecysd Sl Tl NASOR

1l

where Sr = AQ~QMv\AMSWV ’ .\..Aﬁv = AIHRNMAA.V -1 ’ and
arctan(¢~ — 1)~1/2 0< (<t

H H+~|nl. .
mA_zwml;vv ¢>1;

H H+Hlalw
M—H— I]IIHIT wlnlnu A.AO

IO =

The meson-loop contributions to the pion polarizabilities are

mm

QA?Q@V = — _§43. HOIm.\ﬁ:w 2

QQ@QE - s
wt % 3843 F¢m2

El

At the Born level, the Mmﬁ and ME-nQEm of the reduced Lagrangian (22) give:

2
B Be® ~ = B
Fm»%i = mﬁhw + L1o), mmc o) =
In our analysis the constants Fy, p and mY, are treated as the independent empirical
parameters and their values are fixed as

Fp=92MeV, pu=186MeV, md =840MeV. (32)

The corresponding calculated values of the input parameters are also presented in Table
1. The results for the yy — #F 7~ cross sections are shown in Fig.1. All other constants

can be calculated using the values (32):

V=54, y=0.185, Z2 =0.653.

The value for the constituent quark mass u seems to be by a factor of 2 too small
as compared with the corresponding value from the usual phenomenological analysis,
based on nonreduced Lagrangian and currents. A similar shift of the constituent quark
mass has been observed, for example, in ref. [28] after taking into account the vector-
scalar and axial-vector-pseudoscalar mixing in the analysis of the collective mesons mass
spectrum within the extended NJL model. .

Using the values of the parameters Z2 ,7 and (g%)? which were fixed above, one
can compare numerically the structural parameters L; (23) of the reduced efle~tive
Lagrangian (22) with the corresponding parameters L; of the nonreduced Lagrangian

(11):
190-1073, L3=171Ls=-541-10"3, L5=1.99 10"%
853-107%, Lyp=136L1g=—4.33 1073, (33)

Ly =1.20L,
Lo = 1.35Lg

Il
It
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After substituting the values of Z% 5 and (¢2)? into mnm,AwSo:mam.:m_mo oogvm.n

numerically the structure parameters RR; and R;:

R =-0.285-10"%, R, =076, R, =942.10-3 R3 =-0.992.10-3 Ewws
Ra=2, R3=062, Ry=-198.10-2 Rs =039, Ry=123. 10-3 e
RN :

The electromagnetic-weak part of the nonreduced current (25) corresponding ¢
the structural constant Rs 6 (respectively, the .mméo:d of the reduced current Awmvv‘
describes the axial-vector form factor F4 of the radiative decay m — [vy. The form
factors of this decay are defined by the parameterization of the amplitude

I

T,(K n— wy) =2 ﬁﬁ:m?cﬁ\a.\@gmu +iFy, Am: (kq) — en@mi,

where k is the 4-momentum of the decaying meson, ¢ and ¢ are the 4-momentum and
polarization 4-vector of the photon, and the vector form factor Fy is determined by the
anomalous Wess-Zumino electromagnetic-weak current, originating from the anomalous
part of the effective meson action, which is related to the phase of the quark determinant,
The ratio of the axial-vector and vector form factors is determined by the relation **

F
ww = 327%(2Rs + Re).

The theoretical value of the ratio Fa/Fy = 327 L +Lig)=1 arising from nonreduced

current (25) with structure constants Lg 10 (12) Is in disagreement with the experimental
results on this ratio:

Fa\“ (0951010 [29],
Fy 0414023 [30.

At the same time the Rs gives the value

1272 14+ 5%
v | = 0.39
Ne (gy) Y
in agreement with the experimental data and also corresponds with the result of nmﬂ.
[1] ot
Thus, after reducing the vector and axial-vector degrees of freedom it proves to
be possible to remove the inselfconsistency in the description of the ratio Fa/Fv w:@

IHINM 1—

selfconsistency, for example, in ref. [31, 32]). The same problem was also considered
in ref.[33], where the values of the structure constants combination (Iq + Lio) and
plon polarizability arz determined from the fit of vy — 7t 7= ¢ross section data werée
discussed. In ref.[33] the value of the chiral lagrangian coefficient .

(Lo + Lyo) = (1.42 4 0.22) . 19-3 (35)
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been used in the description of the available data on cross mQ..:o.: for CMS t_.c&:.?
__.mm N les 11 the mgzr < 0.5GeV region. The value (35) was obtained from the ratio
O the measured value of the axial-vector coupling constant ¥4 = 0.0116 uwo..ooa
cmmsmw@/\@ Sw._:m of the vector coupling constant Fy = 0.0259+0.0005 in the radiative
and t
pion decy Fa/Fy =0.454+£0.07.

The use of the CVC prediction in place of the Emm_mw:m& value Fyr = o.oﬁww + o.oow,cﬁc_mfm
motivated in ref.[33] by observing that the data on F4 have Vm.m:. m,:w;wm assuming :m_m
lue of v based on the CVC assumption. The value (35) is in a %mmmwaog.msa with
" lue AM + MEV =4.2-1073, corresponding to the fit of the total cross section .&w.nm
omwwwwﬁommmrmn with the parameters, listed in Table 1. Our m:m.;.mmm shows arwm within
M_a %ﬁ.wmar.:mzﬁ& errors the MARK-II data [34] are oo:mmmpa:f st:‘.r the experimental
result for pion polarizability obtained from radiative ™ mow:m:mm in nuclear OMEOEU
fields [26]. We have taken into account one-loop oo:maﬁo:m, while this was :loﬁmoma%\w Mw
ref.[33). The description of the vy — at7~ cross section amnw m._vo<m W = _mﬂ
can be improved if one takes into account the unitary corrections in a more complete

way [35, 36].
6. Conclusion

In this paper we considered the modification of 25. UOmoi.Nma Lagrangian and o%
the currents for the pseudoscalar sector obtained after integrating out the vector an
axial-vector collective fields in the generating functional of the NJL _:omm_.. It w.rwm been
shown, that the reduction of the meson resonances does not affect the kinetic terms
of the strong Lagrangian and the bosonized (V — A) current as well as the Am:l .mv
current, generated by the divergent part of quark determinant. O.s the omrmﬂ han m
the reduction of the vector and axial-vector fields leads to an essential E@%mom.?.o: o
those part of the pseudoscalar strong Lagrangian and of the currents, which o:m_.swmm
from O(p*) terms of the quark determinant. The nom:mm.n_ Lagrangians and currents
allow us to take into account in a simple way all effects arising from resonance exchange
contributions and wA;-mixing when calculating the amplitudes of various processes
with pseudoscalar mesons in the initial and final states.
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