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A review of the Hamiltonian formulation of dynamical systems with a finite num-
ber of degrees of freedom is given. The exceptional case in which the dynamics is
defined by an action principle with a general first-order Lagrangian is considered
in detail. In this case the usual procedure for obtaining a canonical Hamiltonian
formulation fails. A canonical Hamiltonial formulation nevertheless exists under
fairly general conditions, as shown by an explicit construction of the canonical vari-
ables and the Hamiltonian. This construction uses only elements of linear algebra
and the theory of partial differential equations. As an illustrations, the formalism
is applied to the quantization of a real self-dual field in 1 + 1 dimensions.

1. Introduction

The problem of obtaining a canonical Hamiltoman formulation of any given dynamical
system is always of intrinsic interest, and also of interest in view of a possible quantiza-
tion of the system in question. This is true regardless of whether one uses path-integral
methods or canonical operator methods in the quantization procedure.

Here we will first discuss the general problem of obtaining a canonical Hamilto-
nian formulation of an ”arbitrary” dynamical system with a finite number of degrees of
freedom, and then consider the particular case in which the dynamics of the system is
specified by a so-called first-order Lagrangian, i.e. a Lagrangian linear in the ”veloci-
ties”. In this case the standard construction of the Hamiltonian fails, but a Hamiltonian
formulation is nevertheless possible under fairly general circumstances, as will be shown
below.

The recent interest in systems described in terms of first-order Lagrangians was
sparked by a paper of Floreanini and Jackiw [1] which deals with the quantization of a
real self-dual (bosonic) field in a two-dimensional space-time. This paper gave rise to a
lot of animated discussion in the literaure [2,3].
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Hrm.éroﬁm issue was clarified later in a paper by Faddeev and Jacki
to classical theorems of Darboux (see e.g. Abraham and zmnma.m: [ ¥
relevant theorems) for the existence of the canonical <mlym_m ;
defined by the first-order Lagrangians o

How i 1 ific i
e Eo%MmW:MMW:oMMMﬁzm M\.;: Mvmﬁmn models, it is frequently not enough to know that

eration has a canonical structure: .

the ‘ . as e; one really has
S<mm Mnowso:_mﬁ <wiwzwm. explicitly. Here I give an account Omw Somaw Mmsmmwzg
Lve Mgzm MS C for ngm::zm. canonical variables for a general first-order La, Mym e
o g a system <E.$_ a finite number of degrees of freedom, with <m:mZMm :M_.mz
y are commuting. The generalization to an infinite number of degrees omﬂ -
Tee-

ﬁmo:w or to O—m‘mm—nme:( m.:ﬁnoc:—::::_m val —NT_mm ~v~®mm~:m 0O €ssen ~m~ A——_ m :: lesins @O—mo
¢ Hv

[4], who referred
5] for a proof of the

» and may be regarded as

com ~®:—m t y to ﬁrO @HOO@QCmm esente i t p 5 e~
P niar va' nt Q in w:m aper NLHTOC@T ﬁrw VNM—O EWH—H

matical :
— Smmaw_ﬂwzmam addressed in both approaches are the same. The lectures by Jacki
g mmwmmmaﬂojmmm. to earnest students of the subject under discussion ¥l
E » " - N
Htonianization” of any system can trivially be obtained if one is willing to

enlarge the state space of the : S
below. system at will. This circumstance will also be discussed

In the last section the formalism deve

model involving a self-dual field 1 + 1 Qruvm& here will be app ied b fhe feld-theory

imension, which was referred to above.

2.
The Standard Route from Lagrangian to a Hamiltonian
i . .
ere I consider briefly the usual reduction of a Lagrangian system to a can &
onic

Hamiltonian system. It i
. lan . s assumed that the d i 1
action principle involving a general hm%.m:m&:m“mﬁ-& 8 ey i ] by e

%H‘\&:\S.&. Qv

Here th ] desi
e vectors ¢ and ¢ designate the coordinates and velocities, respectively, of the

system,
e (il 2D N 2 . .
o 9=(0,9%..,¢"), 4=(4',¢%...,¢"). )
e then 1
efines the momenta p canonically conjugate to the coordinates q as follows
)
_ oL
ﬁal%l@mvs”Hu.‘._Z. AMV

The Hamiltonian H is given by the following expression,

N
Hp,q)=) pd - L (4)

=1

the case of systemg

Hamiltonian formulation of dynamical systems. .. 105

As the notation on the left hand side of Eq. (4) indicates, one assumes that the velocities
§* occuring in this equation can be expressed in the terms of the coordinates ¢ and
enta p. That is, one assumes that one can solve the equations (3) for the velocities

mnom
é G i
¢ =4(pq) (®)
This requires that the following condition should hold true,
8L
—— ! 6
et () #0 (©)

If the condition (6) is not in force, one frequently uses the term "singular” to charac-
terize the corresponding Lagrangian. If the Lagrangian is singular, in the sense just
explained, then one cannot pass from Lagrangian to a Hamiltonian formalism in the
straightforward manner described above. This is for instance the case if the Lagrangian
is of first-order, i.e. linear in the ”velocities” g, because then the determinant (6) van-
ished identically. We consider this case in detail later on; for the time being assume

that condition (6) is in force.
Then, taking into account the impliccit relation (), one obtaines t

results using Eqns. (3) and (4),

he following

8H 8L
o | P 7
57 og 0 (M)
. 9H
i 8
i =5 (8)

The equations (3), (4) and (7), (8) reveal the basic symmetry between the Lagrangian
and the Hamiltonian formulation; the equations in question are invariant under the
simultaneous interchanges

L=H,p=yg. 9

Under the assumnption (6) the Lagrangian and Hamiltonian formulations are com-
pletely equivalent; given Hamiltonian H(p,q) on can construct the corresponding La-
grangian L using Eq. (4). This of course requires that Eq. (8) can be solved for the

momentum variables p;,
pi = pi(a, ) (10)
i.e. that 92H
det Illlv #0. (1
Op;0p;

However the validity of Eq. (11) is not an independent assumption; the determinants
in Eqns. (6) and (11) are reciprocal numbers and therefore the conditions (11) is a

consequence of the assumption (6).
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3. Enlarged Phase-Space Hamiltonians

1t is not true that every conceivable d
yet if one is willing to enlar
superficially at least, obtain
by Arzanykh [8].

Consider the following system of ordinary differential equations,

ynamical system is canonical Hamiltonian syste
ge the phase space of the system at will, then one can
a canonical formulation for any system, as pointed oyt

k
whNHNwQ.aHT.;HJ, k=1,...,n

where the Z* are given functions of the

arguments indicated. Introduce a set of new
variables y; and form the function .

S
n

H = MU“SQN:?HN“ p——
k=1

so that the equations (12) can be written as follows,

dz*  9H

— = k=

& "oy i s esg Tl
Determining the additional variables Yr by the following equations

d
o _OH

o a0 k=L..n (15)

one obtains a Hamiltonian system with H as a Hamiltonian and the variables z and
y as canonical coordinates and momenta, respectively. However, it is clear that this
1s a rather artificial solution to the problem of whether a given system of equations.is -
equivalent to a Hamiltonian system. It should also be noted that the Hamiltonian given :

by Eq. (13) is singular in the sense that the determinantal condition (11) is violated.

Thus, one cannot without further analysis construct a variational principle involving a -
Lagrangian using the Hamiltonian (13) as a starting point. ,

4. First-order Lagrangians, Equations of Motion and Constraints

We now begin the discussion of our
Lagrangian, with a finite number of
then described by some time-
say, in configuration space.
where N is a positive even
the following action S,

main subject, a system defined by a first-order
degrees of freedom. The state of the system is
dependent N-component object &) = (E11),. .., eV @),
The configuration space is thus an N -dimensional space,
or odd integer. The dynamics of the system is defined by

B

z .
= [at|yetrae)- o). (16)
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The integrand in Eq. (16) defines a first-order Lagrangian £, which we write as a
e ) .
Lagrangian one-form,

3 17)
dtLh =" deAFa(E) - diG(€). (
A=1
ing i bove are given functions,
i d G(£) occuring in Egs. (16) and C,d a
Hr.m M_cwno“ _Mwmmcw.:ﬂmwomwm mzmmvog enough, for the usual <w:w£o=m.~_ procedure connected
iﬂm the action S to make sense. The variational equations obtained from Eq. (16) are
wi > action S

the following

N . G
MU Map€® - A = 0, (18)
B=1
where OF oF,
E»ﬁmﬁmv = M% - %IMMV Awwv

In the terminology of classical mechanics [9] the equations of Bo.ea._.os m_wwmmwmw EMMM_M“MMM
;i 1d be noted that the quantities Fy o :
related to the one-form (17); it shou e et
i i i ion (18) but only through the curl M4p .
directly in the equations of motion ( ) : i el
1 tly related to the one-form (17). :
can be taken to define a two-form invarian . ather than
i ider the quantity Map(£) as an antisy
ng the language of forms, we consi . . . |
Momwmw. ncmummﬁ the crucial property of this quantity besides the antisymmetry,

Mag(€) = —Mpa(§) (20)
is the (Bianchi) identity,
OaMpc(€) +0Mcal€)+0cMyp(€) =0, (21)

i i definition (19).
which follows straightforwardly from the . . . )
The main question is now simply whether Eqgs. Cmv.mnm awmo:_omw.mmw:_Monﬂ MMWMM
i 1 in disgul hether they contain a subset which 1s Ha an.
tions, albeit perhaps in disguise, or w ! o Hamilionan
i i 1 i tion has been answered by the affir
As mentioned in the Introduction, this ques ‘ rmative
i i Faddeev and Jackiw [4], who refer to the ¢
under fairly general circumstances by Fa 1 | e classica)
i 1 coordinates and momenta rela
Darboux theorem [5] for the existence of canonica : : @ related
i 1 16). In the following two sections we p i
to the system described by the action ( . : / o provid
i ining the canonical variables in question, analysing
a constructive procedure for obtaining | i . el
i i ] iti der which the canonical structure
at the same time in detail the conditions un . . : A .
ally emerges. We first consider the important special case in which quantity M4p is
independent of the variables £(t).

5. The Case of a Constant Mg

It is well known [10] that, by making an appropriate vwmmm szmmo::,m:o:‘ N:VM
antisymmetric N x N matrix (M4pg) can be transformed into the following norma
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form:
0 A
=X 0
0
|>: 0
99
0 @)
where the (positive) quantiti 0 :
teristic val ntitles Ag, 0 = 1,...,n h
values of the matrix AINSM »+ -+, Tt are the square roots of those charac.
C~

non- . B), which are di
zero characteristic values A2 is moHnQE: mﬂw different from zero. The number n ¢
o e o

It is convenient t y the rank 2n of .
o relate the normal form (22) to the mozoéowziﬁ Matre Q\.?mv.
N g hinear equations,

mMJ MaBrap = ~AaYou, a=1,...,n @ _v
= ¥ M

N
M MaBYaB = +AaZas, a =1
B=1 ? IERRrE (] AMAV
and

N
D Mapzsp =0, f=1,... N —2 |
with -, | : -
ith the understanding that Eq. (25

(so that N = 2n), in which case the ) is empty if the rank of the matrix (Map) is N

matrix M is regular,

det(Mup) # 0.

Since the i (26)
quantity Mg Qu s : S
. Yy assumptl : . s %
space variable £(¢ . ption, in this Section
1,...,n and NPMA\QV_ ﬁer eigenvalue quantities A, as well %_Mmmmmwwzmmi ofthe stafp-
’ o =1,... _ . ve ey
quantities. » N —2n are independent of £(2) as well M@Onwwmﬂu Yok ¥
, L.e. simply constant

In the general case Eqns. (25) may be nonempt
pty,

solution i
2pp exists. We ortho-normalize the vectors s Vs 6 ks e -
S T ,

A A, Yaa and z88, Unowmlv&
Loy T =
@ 28) = bap, (Yas Yp) = bap, (20, 25) = bag

where the inner Amd
rod i

mo:os\m, product (u,v) of any vectorlike quantities us and is d x"
v4 1s defined as

N
A:,Sm\m:\_f. ﬁwmvv
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The equations (23), (24) and (25) imply the following orthogonality relations,

AHQ_QEV ”OquNw” Hu...u.;w
?SNEHQ?N@V = 0,88 == 1y 5w M = 1,..,N=-2n (29)

We then introduce the following sets of new variables,

N
Pa = MAvawm.».s.Q\f a=1,...,n Awov
A=1
2 1
qo = MUAyovmm>@Q>, a=1,...,n (31)
A=1
and N
ﬁmHMm>Nm>,.®H~“...v2|w: (32)
A=1

As the notation above indicates, and as will be demonstrated below, the quantities po
and g play the role of (a set of) canonical momenta and coordinates, respectively, for
the system of equations (18) with a ¢-independent Mas, whereas the quantities rg are

related to constraits in this system.
Using the definitions (30), (31) and (32) one readily obtains the following result,

%;&m ;:_wq z&%
l.\” VQM Q VQm Q I.\ ww
aeA QMEA v m?a >+QML,EA v Spe >+ QME mi\? Av

Contracting the equations of motion (18) with a solution zga to the zero-eigenvalue
equation {25) one obtains, using the orthogonality conditions (27), (29),

z =
ot PAGEA ~ Orp

N
> oG _ 9G 0,=1,...,N—2n (34)

Thus, the existence of non-trivial solution zga to the zero-eigenvalue equation (25)
(34). These constraints are N — 9n in number, and leave thus

implies the constraints
trained dynamical variables to be determined by the

in principle 2n genuine uncons

equations of motion (18).
From Eq. (30) and the relation (24) follows that

. Y oG
Pa = MAV,QV nm\»g\»m@Qm = |MUAV,QV
AB B

a8

Yo B Awwv

L
2

where the last equality follows using the equations of motion (18). Finaly, using the

result (33) and the orthogonality conditions (27), (29) one obtains,
aG
(36)

Pa=—5—

99a
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Similary, one obtaines straightforwardly, sl
. 0G

We have thus demonstrated that the original equations of motion (18) imply

a mmﬁ of
constraints, namely the relations (34) (if the matrix M4p has eigenvectors correspongd.
ing to. zero eigenvalues), and the proper equations of motion (36) and (37), which ap
indeed in the canonical form, with the va

riables p, and ¢, acting as canonical mo
and coordinates, respectively. The canonical variables (30) and (31)

(as well as the residual variables rs) are of course

can choose for the purpose of showing that the ori

be put in the form of Hamiltons equations supplemented with constraints.
In the next section we show how

ﬁOOO:mQ:Quomzo:mo&<w:wzwm€rmzﬁrm quantity
Map is an arbitrary (sufficiently smooth) function of the configuration space variableg
m.

menta
introduced above
not the only possible variableg One
ginal equations of motion (18) can

6. The Canonical Variables in the General Case

6.1 The Constraints iy
ial solutions z5 to Eqs. (25) is related
which satisfy the equations (18). In the general

As we have seen above, the existence of non-triv
to constraints among the variables &4
case such solutions depend on £,

N
D Map(©)zB(E) =0, 8=1,... N -2 (38)
A=1 i

The equation (38) certainly has at least one non-trivial solution if N is an odd integer,

but may also have non-trivial solutions if N is even, in which case there must be ‘an
even number of such solutions.

Contracting the equations of motion (18) with a solution zg of Eq. (38), one obtains

N

oG
> A et =0, 51,
A=1

But Egs. (39) are genuine constraints; they cannot be a subset
Hamiltonian system, since they contain no derivatives with res
the constraints (39) can be solved at least locall
means that there exists a set of coordinates u;,

ooy N =20, Awov

of a (unconstrained)
pect to time. In principle
y in some appropriate region. This
say,i=1,...,2n, such that

4 =¢Aut, . w?), A=1,.. . N. (40)

Needless to say, the mapping (40) is assumed to be sufficiently smooth.

_The proper
equations of motion are then obtained from (18) by using expression .
2n
: aEB
B k
m s £ Mﬁl&ﬁ Ahu.v
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. 1 rA,
d by multiplying Eq. (18) with 9¢A /9yl , then by summing ove
and DY :
oo . 8G )
> miilt = 5
k=1
where ) )
) 0 %) )
Noogr, 0% _ 0 Mumm%ﬂ -2 S P ,
ik = Buwi AP ouk T 0w i u =

¢ A v
_ e ori q A V :.nﬁ—ﬁﬁw:\wm vV u een
T m:wmw._ & uations O_ :—O~ 1011 :w { __m onsti N::m “wmw rm € Aw— S :

; { exactly the same
. : d configuration space 0 i
uations (42) in a reduced co : laced by a quantity
replaced WW@@OMMWWMM Mbo:om but where the quantity (M4 %wxpwm M@Mvwmga %MV be regular,
form as ) ’ tisymmetric matr - A .
| a 2n X 2n antisy : dentity,
(mjé) SrWoM, oo%Mm& AMMMuMmQ (mjx) also satisfies the appropriate Bianchi identity
i.e. of rank 2n.
8 8 9 (44)

|§..I..Il O
. + — Mk 13
|||.3~Q~n m i ki .Q»U

Jut

6.2Construction of Canonical Variables

1 one can always in principle 0:.5.5@3 possible
- 18), and obtain a set of equations of the same
HBmA r,m reduced configuration space 1s :momm.mm:_.%
:%oé we assume that the required reduction (if

. . tion (18), which we
: he equations of mo .
; and consider again the e . by £4, with the
Hoe:wmav hes gw”o“mwﬂzoi:m still the configuration space variables by £
write down once :

indi =1,...,2n),
appropriate range of indices (4,B,...=1, )

As shown in the Eoe.wo:m subsect
constraints from equations o.m the fo
form in a reduced oosmm:_qws.os space.
even-dimensional, of dimension 2n, say.

3 5 0GE) , _ 0 (45)
B — =1,...,2n.
M Map(£)¢” = 5EA A
B=1 . |
m 1 tisymmetric
n assumed that the quantity Mag, considered as an antisy
It is from now o

S Hﬁ@ﬁ—@.ﬂ 1:€. Oﬁ Hm.:r Mmf SO ﬁmﬂ@ﬁ ﬁw-@ :—N_nﬂsm 18 ::\@H»L—U_O
matrix s 3

46
det(Map) # 0. o

. AB
The inverse of Map is denoted by PAE

it 3
WU MapNBC = 8§ )
B=1

Then we have

m: %QA@ |~ w:. ?mv
BN "NBAE) 7 B=1
¢ mm 3¢
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<<.¢ now m”:m_%m@ the circumstances under which Eqgs
€quations, with the function G(€) acting as a Hamilt )
existence of canonical variables p,, ¢® on
)

va are canonical Hamiltop;
1an. We start by assuming .hu
e

. l.e. a one-to-
variables €4, 4 = J one correspondence s
&, 1,...,2n, and pairs of variables Pa,q% o =1 n between the
) — L,...,n

> —

% A4=1,...2n) — {po, ¢ a=1,... n}. Sow,ﬁ,

It goes without sayi e
ying that the correspond : e

enough; th : . pondence (49) is always as are.
&mmnmmaﬂmw%mm“wmw_omm ::mo?mm mwm.@_im%m assumed to be WW ~mme=M“MMmﬂo vm. maooﬁrr
g the domain of validity of the correspondence (49). T} continuously -,

responding to Eqs. (48) are the following: ). The canonical equa.

@ = m.@@éﬁ po = 2 (®0)
Opa dq> "’
where
H(p,q) = G(&(p,q)). @._v ;

It i ;
1s now a matter of a simple calculation to show that Eq

if and only if the following conditions hold true: (45) and (50) are equivalent

2n
o¢B 0
Map(ey2oo _  Opa
mMUHH \»NAMV %n@ +m.wm> Awwva
and |
2n
o¢B @ ”.
> Map(e) e = - X :
. = e A ol
The relations (52) and (53) imply that ..
Man(€) =3 Amﬁ&ﬁlﬁwﬁ
£ \ 064 567 ~ a7 ¢ 4

The quantity ocurrin i
g on the right hand si
bracket Om. ﬁ.rm quantities £4 and €8, The wMMMMM_M
MMWS .mm.B_:mH. form by considering the inverse N4B
)) i.e. the inverse of the Lagrange bracket (54)

q. (54) is nothing but the Lagrange .
54) can be expressed in a perhaps h
o.». the quantity M, g (compare Eq.

which is the familiar Poisson bracket,’

AP = 30 (SR 267 et o
34" Opa By 5g ) = 164.¢%) |
a=1 9" OPa pa 0¢® ’ P Ammv

Here and in follows {u

, 14, v} p denotes the Poisson b
_<<m nws a:%m formulate the results so far gowo:ww%%ﬁ of any two quantities u, v.
n order ¢ . -
tions, Smnrnﬁraﬂwmﬁww AAQS oy ._vm equivalent to a set of canonical Hamiltoni
Mop occurins i n G(¢) mna_:m as the Hamiltonian, it is necessary th nhan equas
g in these equations be identified with the Lagrange EM k Nﬁ amrmr:\_ma:x
cket of the con-

_.—w—.:mrﬂ:v: ) . a
P m.
ace <m._._m,7~®m n -_® @Qﬁmﬁ—ozm in A—:OmA;O—— -H,Tnm condition ¢ I m_m: _Xw
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s%:wmmom in terms of the inverse matrix N AB. this quantity is to be identified with the

responding Poisson bracket.

or
‘ We write the Lagrange bracket equation (54) in the equivalent form,
o (<~ 9 o (< 0¢°
E&@Am e wm MUﬁQmmm - %mm OMNQQQM\» - A@@v

a=1

] that the quantity M4p is always defined as a curl (e.g. equation (19) or (43))

We recal
Thus, identifying the expressions (56) and (19) one

in terms of given functions Fj.
obtains the following relation,

N 9ge 8%
MS%M = Fal€) + ggx = X6, (57)
a=1

where ®(£) is an arbitrary function which is at our disposal.
So, the construction of canonical variables has finally boiled down to solving the

equations (57) for the variables p, and ¢* for a given set of functions F4(£) and some

appropriate choice of the function ®(£).
It should be noted that the variables pq

in Eq. (57) despite their symmetric appearanc
result of the choice made in Eq. (56), which was one of two possible choices; one could

equally well have switched the roles of p, and ¢ in Eq. (57). The choice described
above, as well as the choice of the ”arbitrary” function ®(€) in the equations (b7) are
related to the possibility of making canonical transformations of the variables pa and
q°.

The equations (57) define a straightforward mathematical
lem of the type known as Pfaffs problem, for which various
the literature [11].

It then remains to solve the equat
by defining a new quantity W4 by means of the follow

and ¢% appear in an unsymmetrical fashion
e in the basic condition (54). This is a

problem, namely a prob-
methods are available in

ions (57) for the variables pa and ¢®. We begin
ing linear equations,

2n

MU Map(E)WHB(€) = Xa(6), (58)

B=1
where X 4 is the known quantity in Eq. (57). Using the relation (54) in Eq. (58) above,
we obtain the following,

9% AN (0o 99°  04° Opa ) yym
W?%TMMA%% e ) W bt

B=1a=1

Defining further the quantities S* and T, as follows,

2n 2n
aq” Ia -
anmw B2 T,=) WP ” 0
.W mn—m\—\ A.wm.m, B=1 mmm l*\ﬁ “ AO v
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one finds that Egs. (59) are equivalent to the following set of 2n linear and hom

equations in the 2n unknowns S* and T, omonmo:m,‘
ey
.

SN Opa
Mmmm>ﬂg+mml>m v =0, A=1,...,2n.

a=1
We mm:onm the determinant of Eq. (61
straightforward to show that
D? = det(Myg) # 0.

Thus Eq. (61) has only zero solutions S* and T, so that

2n

dq®
Y wEZ =0
B=1 %mm

and

2n
i -
S\mb _ ik
M %mm +Po = 0. a&

B=1 -
s

Equations (63) and (64) are i

! re independent differential e 1

: quations for t i ‘

M_Emﬁmm m.z& momenta, respectively, with known coefficients W5 Woﬁmmwnoiom_ ol
so require that these quantities have the appropriate Poisson mgormﬁm

l.e.
Ama.mmwwﬂo. ao,f=1,...,n
{Pa,ps}Pp =0, a,8=1,....,n
and
AQQvﬁ =63 = anh
plp =65, a,f=1,...,n i

ZCS mno:— mﬁ. Arﬂv@v m0=0c<m ﬂrm‘_ 2—0 H 0l1sson 7 acket o any two q €. ﬁg,
vi
I T _A m, uantiti S U @Hwﬁm v :

{u,v}p = NAB Ou dv.
"= 2V g ger ).

We can ¢ i ,,
hus finally state the complete set of independent equations for the canonical

variables. From Egs. (58) and (63), it follows that the canonical co

the set of n partial differential equations: ordinates o* satity

2n

0q®
A,B—1

Furthemore, from the conditions
obtained:

w3
mgmu
>15-m’|1n|l l
}kMH Amvmm> 0¢B =0 G F =1, (70)

) by D. This determinant is non-zero; it is m.wmu_w

er, one mro_:.m .

M vmkﬁmv\<>mﬁmv% =0, a=1,...,n. (69)

(65) the following set of w:? -1) o@:maosm.mwm‘
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The corresponding equations for the canonical momenta p, are the following, according
to Eqs. (68) and (64):

n

3 x\_ziﬁwﬁhn?. a=1,...,n. (11)
9B

A,B=1

According to the conditions (66), (67) and (68), Egs. (71) finally have to be com-
pleted by the following equations

2n
Opa Opp
NAB() 5 5 = 0,0, 0=1,...,m (72)
PR
and \
- 8q™ Opp
Al e = 5 = A o
>Mmuﬂz O geages =0 P =hoon (73)

-

The construction of the canonical variables has then finally been reduced to a purely
mathematical problem, namely to the solution of the groups of independent partial
differential equations (69), (70), and (71)-(73), respectively. The existence of solutions
of these equations is a standard question of regularity conditions for the known functions
Map and Fu (as well as the function @, which is at our disposal), and need not be
elaborated upon further.

I have recently become aware of the circumstance that the construction of canonical
variables in a problem which resembles the one considered here, along similar lines to
the construction above, has been presented in the literature [12].

In conclusion we may state our results as follows:

The set of equations (45) are canonical Hamiltonian equations, which can be for-
mulated in terms of a set of canonical coordinates and momenta, respectively, provided
that the inverse NAB of the matrix Mp occuring in Eq. (45) can be taken to define
a Poisson bracket structure as given by Eq. (55). This question in turn is equivalent
to that of the existence of solutions ¢* and pq to the partial differential equations (69),
(70) and (71)-(73), respectively.

In any given problem, it may be as complicated to bother about the canonical
structure in the manner discussed above, as to solve the problem directly, using whatever
means seem appropriate. However, in cases where the details of the canonical structure
are of importance, the above method can yield fruitful insights.

7. Application to Self-Dual Fields in Two Dimensions

We now consider a self-dual field x in a two-dimensional space-time, with dynanics
specified by the Lagrangian given by Floreanini and Jackiw [1], which was referred to
in the Introduction. The action functional is the following,

+L 4L +L
S = \& W\)h \|h dzdyx(z)e(z — y)x(y) \W\ dex*(z) ¢, (74)

=T
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where we follow the notation of Floreanini and Jackiw, with the exce

initially restrict the Ao:m-&:gm:mmo:m: space to a finite interval (—L L). The b
y o) Sym

above denotes the sign-function, ol¢

€(z) = O(z) - O(~=z) (75)

The time variable is suppressed in E

L
3 ) dvete— 9(0) = x(o) (18
The boundary conditions for the field x, which follow from Eq. (78), are as follows:
| x(L) + x(=L) = 0. Qd
"The integrand in Eq. (74) defines a first-order Lagrangian L(1) analogous to the one

considered previously. Usin 1
¢ g the field equation (76) on i i i i
analogue of the matrix M AB considered in mmoamm:mvm mMQoM: mmediately ety @m

Hh

Map —— M,, = Le(z - 1
Y MAAN\. Qv“ gﬁ@ = %\AH —_ Qv Aﬂmv

The field theory model consi
. onsidered here thus corr «
e il th : . : espond to the case of a const i
X Jide Mg m:mwm Awmwzw_mwﬁﬂgwa:.n quantity M, but still requires a slight Mm:mwmmxﬂﬂ.ﬁ Tmm
I etoped previously; the discrete indices (A, B ) simply h _ME%
Yy continuous ones (z,y,...) and the summation by m_s Enmmamﬂwn “«M@bﬂﬁm

wvgovlmam.Oaraaimmmaoﬁo:r . .. .
verbatim. mno:mamwmronmEmonﬁoumnmz be taken over almost

HE OHQ@H ﬁo Oczmﬁﬁ_.:uﬂ ATO ano v OITESPO! O ystem A_,O_m__m; ~ v..(n
can H—mﬂw_ mﬂwmw.—mm by

Cor. D Uﬁm:‘wm t ﬂrm syst
ﬁrm mﬁn~0~u HN we r@c@ to woﬁcm ﬁrm mo:os:w palr Om €] ®-<@~:® @Q:Wﬁ—o:mu <c~:0~u. are

analogous to Egs. (23) and (24 i i
s ) (24) (we change the notation slightly: 244 — fo(z), yaa —
1 \n
Z d — =
3 J_, W@ —v)fa(y) = ~Aga(x) (79)
1k |
3/ e = Da(s) = +hata(o). (30)

The orthonormalized solutio
ns of Egs. i i
boundary conditions (77), are the Hao:OEAme {19 s (B0, which e consstent. with

fole) = oz (€08 (kat) +sin (kez)) (81)

and

ption that “We :

- q. (74) and in what foll .

Th . . ollows whenever e

¢ variational equation following from extremizing the action (74) is nrmmxmwwﬁz.&.:
owing .
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QQAHV = /\Hw\W

(cos (ko) — sin (ko)) (82)

with
_ T
VQ“»”QH“ \QQHAMQIHvz\JIw”NH, Q”_qu... A@wv
The canonical momenta p, and coordinates go are simply the following, according
to Egs. (30), (31) and the above results,

L L
Po = \ dz\/Aaful@)X(2), 4o = \ dzy/Aaga()x()- (84)
L L

The inverse formula expressing the field x in terms of the canonical variables is,

x(@) = 3 VEa(Pafal(@) + gaga(2))- (85)

The Hamiltonian G, which immediately can be read off from Eq. (74), is then
expressible in terms of the canonical variables,
[o ¢}

L
G=3 [ doxe)= ) S +ad) (36)

a=1
The canonical variables obey the Poisson algebra,
{da,pp}P = bap, {4aa8}P =0, {PasPs}r =0 (87)

It is a simple matter to obtain, e.g. the Poisson bracket of the field x at different

points 1n space,

(e, x@)}p = — DA (fal2)9a(y) = fa(®)ga(2)) = 8'(2 = y). (88)
a=1

After all this machinery, it is easy to make a transition to the quantized version
of the self-dual field making the usual replacement of Poisson brackets by —i times
commutators (with b = 1, of course). Denoting quantum operators by a caret, the
quantum version of the Poison algebra is then the following,

EQ.N\WE = &Quq Eo:@,& = O“ Fmo:mw& =0. Amwv
Introducing new operators, @, and al,, by means of the following equations,
p (14 )aq + (1= Dab], da=—5 [(1+Dda— (1 -Dab],  (90)

1
EQHIM

one can summarize the commutator algebra (89) as follows,
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[, FS = bagp. @C

\H’F . ’ -~
e expansion of the field operator ¥ at a fixed time (t = 0) can then be rea

from Eq. (85), a off

x(z) = I/\.mlﬂ QM_ /\mAmQ exp (—ikaz) — al exp (+ikqz)) . Acwv@

Usi |
sing the commutators (91) and the expansion (92) above, one immediately obtaj i
3 ns

the equaltime commutator,

[X(=), X(v)] = i6'(z — y), (93)

ccmz.n_n 1S ﬂ?@ Um;w:u OOmca_.—ﬁm.ﬂOH ive 7% TV eanini W:Q ._N. W H~ m:& cc::w_w s
m n m; T
n Omﬂu 1 ~=Q00ﬂ
HT e most na ﬁ_~_um~ wn_\sud:nmﬁmﬂ _.H: a mnms m_u —m %

From Eq. (86) one finally gets the normal ordered quantum Hamiltonian £

H= QMHM ko(@ldy). (949)

We sh . .

o nrmomMM%:M_ow Mm..nwmmﬁ”mncwm ;M physical interpretation of the operator formalism
; ! as been done (in the limit i i ity i

the paper by Floreanini and Jackiw ncoemm Eoi_ogcn_w_%m 00 with admirable clarity i

8. Summary and Conclusions

In this i i
o <w%M~wM~ M have given a m%mnmﬂwrn procedure for constructing unconstrained nm.uonl._
oo poriabl .ma.o_. Ewﬂv\ m%mmmg that is described by a first-order Lagrangian, which is linear
n w:m;mmm _mm.m nro carcumstances under which there are nozmﬁwm:ﬁm in the system
i) s oa‘ NM __u_m .mrosi that the constraints can always be eliminated {in prin-
pEN e Mw 0 0 55 an :doo:m:mmbam system. The conditions under Swworvnrm.
unconst “EM mwmnma is .omaoEomH are derived explicitly; using the language of forms
one sww o M M the &E%Sonm mm.mo:oim“ the Lagrange one-form leads to an exact aéo..
hmmﬂpumwwn . :oMMWmH ~M~ HM,M mncwﬁﬁ_onm of motion, and which is invariantly related to the
ngia - . e system is canonical if and only i e
My . . 1 only if the co
wo %M:ﬁ In question can be identified with a Lagrange bracket of gmMMMMMyam ot
e 1 A
mwm:mmm:.NWMOMM?EMEM of ﬁ.rm system is thus defined directly by the form of the bmw
; no ireedom in choosing Poisson brackets (the i :
Unmﬂﬂma& mo.n the phase-space variables of the system. * (the inverse of the Logrange
€ main part of the analysis has for simplicity been done only for a system SE_.

m 3 . .
a fimite number of degrees of freedom in this paper. In this case, the Lagrange bracket
, ra ,

4 g
OO. :Qnﬁ:u: m@—mmmaﬁm to NTOQG m.—m.m T@@B mros: to ~®m\mm to a set ] e @:A_OEA art —Nm
= § t Om. —:n- P P 1
le@ﬂ@.iﬁﬁm@ @@CN._U_OEM .MOH HTO ON.;O=~O@~ OOOHQWEWﬁmm W:Q momenta ~®m~u®0—\—‘c®~v~ Mrﬁmm
@QCW&—OH—@ -@<¢ OOOEO.@ﬂ&m ﬂrmﬁ are &@ﬁ@ﬂamﬁ—@; —uN_gmw\ va ﬁrm HLNWHM.SWMN: W\EQ U ﬁmv
ar —uv
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what is essentially a gauge choice. This freedom is in turn related to the possibility of

making contact transformations among the canonical variables.

The fomalism developed here may be compared with the analysis of first-order La-
gians which employes the Dirac theory of constraints [13]; an account of this kind
lysis has recently been given by Govaerts [14].
his paper has been applied here also to the case of self-dual fields
in a two-dimensional space-time; this has required a slight generalization of the formal-
ism to a system with an infinite number of degrees of freedom. This generalization is
ghtforward for the case of the self-dual field in 1 + 1 dimensions. The canonical

self-dual field has been exhibited explicitly, and then used as a step-
tion. The results obtained are in

mab
of an ana
The formalism of t

strai
structure of the
g stone for the quantization of the system in ques

pin,
ment with those obtained previously by Floreanini and J ackiw [1].
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