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The differential cross-sections for the elastic scattering of alpha-particles by*°Ca
are analysed using the dispersion relation for optical model potentials with Saxon-
Woods form factors. The dispersion relation gives rise to a real surface peaked
term as a consequence of the empirical surface imaginary potential. Including this
real surface term gives a consistant account of the data over the whole energy
region.

1. Introduction

Optical model analyses of nucleon-nucleus scattering, particularly by Mahaux and _
collaborators, have shown that it is possible to fit the differential cross-section and
polarisation data with potentials whose real and imaginary parts satisfy a dispersion
relation. This enables the interaction between a nucleon and a nucleus to be treated in
a unified way over the whole energy range from bound to scattering states, and shows
the connection between the real and imaginary parts of the optical potential [1].

The dispersion relation should also be applicable to the interaction of composite
particles, and some investigations have already shown that they can be used successfully
to analyse alpha-particle scattering [2]. Several other studies have also shown that
empirical potentials can be found that unify the bound state and scattering data for
the interaction of alphaparticles with nuclei, particularly with “°Ca [3].

The purpose of the present work is to make a full dispersion relation analysis of
alpha-?°Ca elastic scattering data with the possibility of extending the alpha-particle
potential to the bound state region. The nucleus *°Ca was chosen because there is
avaiable a large body of accurate elastic scattering data over the whole energy range.

Mahaux et al [2] applied the subtracted dispersion relation to the elastic scattering
of alpha-particles by 160, *°Ca and %®Ni and found that they give a consistant account
of the energy variations of the volume integrals of the optical model potentials. These
energy variations are largely determined by the behaviour of the imaginary potential
W(E,r) at low energies, in particular by its rapid decrease near the Coulomb barrier.
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The absolute magnitude of the dispersion integral, however, depends rather critically -

on the assumed behaviour of W(E,r) at high energies. Mahaux et al therefore nop-
malised their calculated values to the empirical value of the real volume integral at the
maximum.

While the use of volume integrals (as in ref. [2] ) is simple and convenient it fajlg
to reveal the radial variation of the dispersion contribution which may be significantly
different from that of the mainly energy independent part of the real pontial. This hag
not been investigated so far for composite projectiles. In the present work, we therefore
studied the energy and radial variation of the dispersion contribution. .

In Section 2, we derive a dispersion relation (DR) for the equivalent local optical
potential. Application of this to the volume integrals of the alpha-4°Ca optical po-
tential shows that the nonlocality of the real potential is negligibly small. However,
we find that even a purely local potential with the DR term included gives a stronger
energy dependence than required by the experimental data. This difficulty is shown to
be intimately related to the uncertainties in the imaginary potential at high energies.
Further, we also point out that there are some fundamental difficulties in the use of full
dispersion relation for any composite projectile if one tries to go beyond studying the
qualitative behaviour of the real potential near Coulomb barrier.

Using the empirical data, we have been able to extract, as described in Section 3, one

part of the dispersion integral with much less ambiguity. We show that the dispersion
relation gives rise to a real surface term as result of a similar term in the imaginary part
of the optical potential. The predicted real surface term is then used (in subsection 3.2)
to analyse the alpha-*°Ca elastic scattering data from 18 to 100 MeV.

We conclude, in Section 4, that the scattering data is consistent with the real surface
dispersion term.

2. The Dispersion Relation for N ucleus-Nucleus Scattering

It has been shown by Mahaux and others [1,2] that the real and imaginary parts of
the optical model potential for composite particles satisfy the dispersion relation

, NP [ W(E " )E
V(E;r,r) = S,Aﬁﬂv.*.ﬂ : Am_\.!“wv ,
i o e

Vo + AV(E) T

where V5 and AV(E) are in general non-local. However, for composite particles the
non-locality is expected to be small [4] and therefore it has been previously neglected.
Initially we assume V; to be non-local, and the imaginary potential to be local [2]. To
obtain the equivalent local potential we use the Gaussian model of Perey and Buck [5]
for the nonlocality of V, namely CH

=
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where 3 is the rangle of the nonlocality.
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Since the phenomenological potentials are local we identify them with the equivalent
local potential

QhA.@“q.v” «\hﬁ.@,ﬁv;r:a\hﬁ@_%v va

Using the relation of Pery and Buck [5] gives

UL(E,r) = Usexp[~a(E —UL(E,r) - Ve(r))]
+AV(E,7) +iW(E, ) )

where V.(r) is the Coulomb potential. Since we apply the above unm_maoa to study
the alpha-*°Ca system for which & = 0.002MeV~! (« = MB?/2h* and 8 = 0.2fm
for alpha particles [6]) and the imaginary potential [7] Wi (E,r) < 30MeV for E <
150MeV we expect aW(E,r) to be very small. Using this approximation, the real and
imaginary parts of eq.(4) become

VL(E,r) = Usezp[—a(E — VL(E,r) — Ve(r))] + AV(E,7) (5)

Wi (E,r)[1 — alo)(r)eap(—a(E — VL(E, 7) — Ve(r)))] = W(E, ) (6)

In order to study the scattering of alpha-particles from *°Ca we make certain simplifying
assumptions in eq.(5) as used by Lipperheide and Schmidt [8] for inicident Eoﬁw:m. M\<m
replace the quatities in the exponentials by their values at 7 = 0 and approximating
VL(E,0) by its empirical value found by Delbar et al [7]

Vi(E,0) = —198.6(1 — 0.00168E) )

and V,(0) was calculated assuming a uniform spherical charge distribution for 4°Ca and
a structure less point alpha-particle.

In case of heavy-ion scattering the potential is well determined only at the m?wbm
absortion radius (SAR), so eq.(5) has been used at SAR [2,9] with a = 0.0, ﬁrmn._m a
purely local potential. However, *°Ca shows some transparency [9] to m_vrm.wmaso_mm
and the scattering seems to determine the optical potential even at small radii. After
integration over the target volume, eq.(5) becomes

Jv (E) = Juexp[—a(E — VL(E,0) — Ve(0))] + AJyv(E) (8)
where dn .
L Vi(E, r)rd
Jvi (E) e \c L(E,r)r’dr
AJy(E) = -2 \ ” AV(E, r)ridr
v ApAr Jg ’
4 £ 3
=—— | WL(E,r)rdr

To = =g [ Wi(e,r)
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4ir >0 2
\C.\S.\c WL(E,r)rdr

mm.:nm @ Is quite mamF we take Wi (F) ~ W(E); this simplifies the calculation of
the m_mwmam_o.s term in eq(5) without much error and is Justified by the scatter of the
real volume integrals (see Fig.2). The dispersion term in €q.(8) then becomes

Jw, (E) = —

?.i@u w \ 8 ?&m\wm\ )

O:m difficulty in calculating AJy (E) using €q.(9) comes from the behavior of WL(E)
wa high energies. We have assumed that Wi (E) falls to zero at some cut-off energy E,, ag
in mmmuﬁv. Our calculations show that although the energy dependence of Jv(E) at low
energies does not depend sensitively on the cut-off energy Ep, the absolute magnitude
o.m AJy(E) is quite a sensitive function of E,,. The calculated energy dependence of the
dispersion contribution has been extensively used to explain the behaviour of the rea]
.voemcam_ at energies near the Coulomb barrier [2]. However, the aim of the present study
1s to estimate the quantitave features of the dispersion relation(eq.(8) and eq.(9)) and
.ao estimate the nonlocality in the real potential for the alpha-4°Ca system. This system
is chosen because a large body of elastic scattering data is avaible and also 4°Ca shows
some transparency to alpha-particles for quite small radii, so that the volume integrals
of the coresponding potentials are more acturately known than for other systems. The
<o_:Bm.m=3m3_m of the empirica] total imaginary potentials obtained in a large number
of previous analyses from 18 to 166 MeV are shown in Figure 1. Following [2] we
calculate the dispersion term, approximating Jw, (E) by three straight line segments.
The first segment is from imating Jy, (E) by three straight line segments. The first
segment is from zero to 72 MeV (where Jy, (72) = MeV — fm®). From 72 MeV to 250
MeV zero to 72 MeV (where Jw, (72) = 98MeV — fm®). From 72MeV to 250 MeV
we assume a small positive slope so that Jw,=115MeV ~ fm? at 250 MeV . This has
.vmm: found necessary by Mahaux et al to improve agreement with the empirical volume
Integrals of the real part beyond 80 MeV. Above 250 MeV we take line segments going
to zero at 600, 1000 and 5000 MeV to study the effect of these choices on AJy, (E).

The above form for Jw, (E) allows the volume integral in eq.(9) to be easily eval-
uated, and using Ju, and « as free parameters we fitted eq.(8) to the empirical real
volume integrals, taking F,, = 1000MeV. Fig.2 shows that the qualitative features of
the energy variation of the real volume integral are reproduced by this calculation. Fur-
thermore our results show that the data reproduced by this calculation. Furthermore
our results show that the data require o = 0.0 namely a purely local real potential. Set-
ting & = 0.002M eV~ worsens the agreement with the empirical real volume integrals
.mo~. E > 80MeV. Even with a purely local potential the calculated energy dependence
Is stronger than required by the data. A similar result was found by Mahaux et al [2].
However, here we investigate this discrepency further and estimate the depth of the
energy independent term U, following the procedure of ref.[8]. Choosing ry = 1.41fm
and ag = 1.24fm (as in ref.7, for which Jy, = 2.1fm®) we find Uy = 110MeV, which is
much smaller [4] than four times 70 Mel estimated by Perey and Buck [5] for nucleons.
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Fig. 1. Solid circles are the volume integrals of imaginary optical potentials [1] from the
analyses of alpha-**Ca elastic cross-sections. The three line segments, solid, dashed and dot-
dashed, correspond to three cut-off energies Ey, = 5000, 1000, 600 MeV.

Table 1. Best fit parameters for a—°Ca (see text for details). All depths are in MeV and
distances are in fm. D indicates parameters of Potential B from ref. [7].

E Vo T ag W, T a W, r a Mww 1%
[MeV] o 0 v Tw v T N, | My
18.0 19494 | 1.36 | 1.35 1.73 | 213 { 0.30 | 23.10 | 1.33 0.32 30 170
22.0 192.15 | 1.35 | 1.31 1.65 | 2.19 | 0.35 | 14.80 | 1.33 | 0.42 62 143
23.0 185.11 | 1.38 | 1.27 0.0 - - 7.20 1.81 | 0.55 69 244
24.1 194.31 { 1.34 | 1.27 2.03 | 236 [ 0.82 | 14.47 | 1.33 | 0.42 62 143
26.1 17717 | 1.41 | 1.24 5.66 | 1.79 | 1.00 | 11.94 | 1.33 | 0.55 90 251
29.0 157.59 | 1.50 | 1.17 0.32 | 2.78 | 0.34 | 3748 | 1.33 | 0.47 61 59
36.2 180.97 | 1.41 | 1.30 6.58 | 1.98 | 1.44 | 1469 | 1.31 | 0.35 66 85
39.6 175.80 | 1.39 [ 1.26 | 12.00 | 1.65 | 1.90 14.84 1.43 | 0.35 47 67
42.6 186.51 | 1.37 | 1.30 8.76 | 1.94 | 0.57 | 10.00 | 1.33 | 0.35 76 90
49.5 176.41 1.41 1.31 9.70 | 2.01 | 0.80 7.00 1.33 | 0.35 47 63
61.0 157.05 | 1.41 1.17 | 19.12 | 1.72 | 1.09 4.00 1.33 | 0.35 14 30
100.0 158.44 | 1.41 1.22 | 2162 | 1.82 | 0.83 2.28 1.33 | 0.35 22 30

Even for o = 0.002MeV 1! the calculated depth is only about 174McV. Further, the
depth Uy would decrease for a higher cut-off value E,,.

The calculated dispersion term with the high energy cut-offs E,, = 600, 1000 and
9000 MeV are shown in the lower portion of Figure 2. It is notable that although the
energy dependence of the dispersion term is very similar (at low energies) in all cases the
absolute magnitude increase with increase in cut-off energy. This implies a change in the
magnitude of the energy independent term required to match the empirical real volume
integrals. Thus the depth Uy calculated above cannot be extracted unambigously as long
as there is uncertainty in the high energy behaviour of the imaginary potential. Further,
any increase in the imaginary potential at intermediate energies (as in figure 1 of ref.[10])
would also affect the real potential at high energies (E> 80MeV). The agreement
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Fig. 2. The three curves in the lower portion of the figure show the dispersion contribution to
real volume integrals corresponding to three cutoff values used for Jy compared with volume
integrals as in figure 1. The upper portion of the figure shows the empirical (solid circles) and
the calculated total volume integral for two values of the non-locality parameter (En = 1000
MeV used).

obtained by Lipperheide and Schmidt [8] for incident protons depends sensitively on
the cut-off energy (E,, = 600M eV ,which is quite arbitrary). A higher cutt-off (Fig.1b
of ref.[8]) would have resulted in a smaller depth Up.

The above discussion shows that for composite projectiles the dispersion relation can
be used only to study the qualitative features at low a energies. Our calculations show
that the absolute magnitude of the dispersion contribution depends quite sensitively on
the value chosen for the cut-off energy E.,. Further if the imaginary potential increases
in the intermadiate energy region it would also effect the energy dependence of the
real dispersion term. Thus there seems to be some real difficulty in the use of full
dispersion relation for composite projectiles which would require a rigorous derivation
of the corresponding dispersion relation and a better understanding of the asymptotic
behaviour of the imaginary potential. The situation is different for incident nucleons,
where the dispersion relation is on a much firmer theoretical footing, the particle and
hole structure of the target is better known and the high energy behaviour of the
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Table 2. Parameters obtained in the modified analysis (see text for details). All depths are
in MeV and distance are in fm. * denotes parameter kept fixed during search. D indicates
parameters of Potential B from ref.[7]. The + sign denotes attraction and -sign repulsion.

E(MeV) Vo AVyie W, W, To ag w2 [Ng

18.00 174.71 - 0.0 9.971 D D 37
174.81 - 3.55% 8.524 1.41 1.21 38

165.68 | 4+11.88 3.55% 8.419 1.41 1.23 34
22.00 176.73 - 3.97 9.291 D D 107
175.88 - 9.63* 6.85 1.411 | 1.218 110
155.75 | +13.63 9.63* 6.76 1.45 1.19 106

23.00 173.59 - 11.812 1.307 D D 76
173.55 - 11.61% 1.40 1.41 1.21 76

163.61 | +13.41 11.61* 1.35 1.45 1.18 73

24.10 177.44 - 0.0 10.59 D D 84
171.23 - 13.86* 5.91 1.408 1.30 96

171.18 | 412.73 | 13.86* 5.46 1.38 1.36 86

26.13 174.34 - 12.755 7.523 D D 51
177.35 - 17.60* 5.66 1.405 1.24 86

185.07 | +10.40 | 17.60* 4.85 1.352 | 1.305 62

29.00 174.25 - 25.869 3.134 D D 51
172.28 - 21.56% 3.90 1.40 1.21 50

193.81 +3.92 21.56* 3.67 1.33 1.33 36

33.82 175.12 - 17.095 1.19 D D 80
171.07 - 19.42* 0.114 1.405 | 1.202 72

217.70 -8.11 19.42* 0.230 1.286 1.34 60

36.20 172.89 - 12.292 | 10.334 D D 62
222.89 - 15.20* 10.00 1.401 | 1.152 67

214.12 -11.86 15.20* 8.94 1.31 1.32 56

39.60 173.58 - 5.25 13.44 D D 42
175.74 - 8.61* 12.887 | 1.409 | 1.258 41

207.00 -13.40 8.61* 12.743 | 1.342 | 1.317 40

42.60 171.26 - 10.23 12.90 D D 78
178.36 - 4.21% 14.01 1.387 1.27 76

256.93 -12.93 4.21%* 12.57 1.20 1.441 44

49.50 169.64 - 0.0 16.21 D D 78
173.95 - 0.39* 17.01 1.409 | 1.284 40

198.76 -7.38 0.39% 16.783 | 1.347 | 1.345 39

w_ 61.00 166.42 - 3.90 18.49 D D 20
165.17 - 0.007* 18.52 1.407 | 1.224 20

186.95 -4.04 0.007* 18.52 1.349 | 1.293 20

100.0 154.14 - 0.0 24.12 D D 35
157.54 - 0.0% 24.12 1.402 | 1.256 34

172.07 -1.67 0.0* 23.51 1.36 131 32

imaginary potential is also more accurately known. However, in the next section we use
the empirical imaginary potential to calculate one part of the dispersion integral and
also investigate its effect on the elastic angular distribution of alpha-particles by %°Ca.
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Fig. 3. The depths of the surface imaginary potential for alpha-**Ca found in our analysis.
Solid curve represents least square fit using eq. (14). The inset shows the calculated depth of
the dispersion contribution eq. (15) using the solid curve for Wy.

3. Dispersion Relation Analysis of Alpha - “°Ca Elastic Scaterring

3.1. The Real Surface Term in the Dispersion Integral

Optical model analyses [7,11] of the elastic scattering of alpha- *°Ca and °Ni in-
dicate that the imaginary part of the optical model potential can be written as a sum
of volume (W, ) and surface derivate (W) terms. Furthermore, phenomenological po-
tentials require that the surface imaginary term goes to zero at high energies. We use
this empirical fact to calculate the dispersion contribution from the surface term alone
and are thus able to avoid the uncertainty connected with the high energy behaviour
of the total imaginary potential. We may thus write, using equations (1) and (4), the
local optical potential UL (E,r) in the following form:

E - F
+iW, (E,r) + iWy(E,r)

%} " " ;
QHAQM q.v = § + m,\ T\ﬁ\cﬁm uﬁv + S\&Am ‘ﬂv_n—m_
0
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_ P [ Wa(E',r)dE’

= <Am‘ﬁv+ﬂ4\ﬁw E -k

W, (E,r) + iWa(E, r)

V(E,r)+ AV4(E, r)+iW,(E,r) + iWy(E,r) (10)

In these equations we have combined the dispersion contribution from the volume
term (W, ) with the energy independent term Vo(r). This helps us to identify V(E,r)
with the energy-dependent volume type real potential used phenomenologically. Thus
the use of dispersion relation gives rise to a surface real contribution AV4(E,r) as a
consequence of a surface-peaked imaginary potential. Another source of real surface
peaking through the dispersion relation would be the increase in imaginary radius with
energy. However the latter source would be plagued with the same uncertainties as the
imaginary part at high energies. Therefore, we consider here the former source only.
A similar type of surface term was predicted [1,12] in the nucleon optical potential. In
the next subsection 3.2 we test for the presence of the predicted real surface term by
analysing the differential elastic cross-section for alpha-4°Ca scattering.

3.2. Analysis of alpha-**Ca Elastic Scattering

In order to test the prediction of real surface term AVy(E,r), we need to know the
energy and radial dependence of Wy(E, r) as unambigously as possible. To achieve this
we use the results of earlier analyses[7,13,14] of alpha-*°Ca scattering in the energy
range from 18 to 166 MeV and adopt the following procedure.

We use the same data as analysed by Delbar at al [7], augmented by those of Gubler
et al [13] and the low energy data of Gaul et al [14] at [18] and 22 MeV. The first
authors found good overall agreement with the data from 24 to 166 MeV with fixed
form factors and potentials depths with the following simple energy variations

Vo = A+ AE . (11)
S\e = \»m — \&w oxﬁﬁ|\»a.@v AHMV
Wag = As mxvﬁlﬁa@v + A7 Ava

with squared Saxon-Woods form factors for V5 and W, and the derivative of this for
Wy. The values of chi-squares corresponding to the potential of ref. [7] are listed in
the last column of Table 1. Fig. 1 of ref. [7] and Table 1 show that the fits deteriorate
at lower energies. Since the effects of the dispersion term AV,(E,r) (see Figure 3) are
greater at low energies, one of the objects of the present work was to see if the fits
at the lower energies could be improved by the inclusion of the real surface dispersion
term without introducing additional parameters. It is notable, that the values of some
of the parameters (in ref. [7]) might be considered somewhat unphysical, in particular
the high value of the radius parameter r,, and the low value of r4, and we wanted to
see if this could be improved without significant reduction in the quality of agreement.

The whole data were therefore reanalysed allowing all parameters to vary, starting
from the Delbar values except for those considered unphysical. In particular, the value
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of rq was mitially fixed to 1.33fm, and allowed to vary only in the final stages of the
fitting procedure. The results are shown in Table 1, and it is notable that although
the form factors are now much more reasonable, the values of the depths show such
large fluctuations with energy that it is difficult to use them in the dispersion integral
Furthermore, the quality of agreement is in most cases not significantly better gw:.
oro%.w of Delbar, although the chi-square values in Table 1 refer to an average smoothly
varying potential, whereas in our analysis all the parameters were varied at each energy
We therefore adopted the form factors of Delbar in our subsequent calculations. .

In the first of these, the potential depths Vo, W; and W, were varied, keeping
the form factors fixed to the Delbar values ry = 141fm, ag = 1.24fm, r; = 0.62fm
ag = 1.04fm, r,, = 1.79fm and 4y = 1.00fm. The results are shown in the first :um
of Table 2 for each energy. To allow for the possibility that the average geometry .of
the u.mmﬂ potential may not be sufficiently flexible to absorb the effect of the energy-
varying dispersion term, the analysis was repeated allowing r and ag to vary also. The
optimum values found for these parameters, together with the corresponding values of
chi-squares, are given in the next line in Table 2.

The energy dependence of the surface imaginary potential depth W, found in this
analysis are shown in Fig. 3. The error bars show the range of depths which cause a
less than 20 % increase of chi-square. It was found necessary to smooth any abrupt
changes of W, with energy at few energies only. Since the functional form for Wy(E)
used by Uo_vmm et al increases exponentially at lower energies, we used the form

Wa(E) = 21(E ~ 23) exp(~((E — 2)/24)") (19)

where 3, 24, z3 and T4 are varied to optimise fit to the depths shown in Fig. 3 in
the energy range from 18 to 61 MeV. Equation (15) thus represent the average energy
variation of the surface imaginary potential depth Wy(E). Since the surface part of the
Imaginary potential is not well determined [14] at low energies (EF < 18 MeV) we use
a line segment from 0 to 10 MeV to calculate the dispersion term Va(E, r). This intro-
.Q:nmm some uncertainty in the dispersion integral but we feel that this approximation is
Jjustified given the exploratory nature of the present work. Using this prescription for
the energy dependence of Wa(E,r), we evaluated the dispersion integral

sﬁmi,v&%
E—F

and the resulting depths of the real surface term are shown as inset in fig. 3. The radial
variation g(r) of the AVy(E,r) is identical to that of Wa(E,r) used in ref. [7].

4 Having fixed Wy(E, r) the calculated AVy(E,r) was then added to the real poten-
tial used in the earlier analysis. The alpha-*°Ca elastic angular distribution was then
reanalysed in the energy range 18 < £' < 100 MeV with the modified real potential. To
obtain the best fit to the data only four parameters were allowed to vary, the imaginary
volume depth W, and the three parameters Vo, rg and ag of the volume real potential.
The surface imaginary depths were held fixed to the values obtained by fitting eq. (15)
to nrm empirical depths, so that the additional real dispersive term is consistant with
the imaginary potential Wa(E,r) used. Thus the number of parameters in our analysis

AVa(E,r) = AVy(E)g(r) = W\oa (15)
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is the same as in the phenomenological analysis and hence a comparision of the cor-
responding chi-squares may be made. The results are shown in the last line for each
energy in Table 2. Table 2 shows that at almost every energy the value of chi-square is
lowered by the inclusion of the real surface term calculated from the dispersion relation,
although the reduction is not significant. This surface term should not be confused with
the purely phenomenological real surface term used in ref. [15].

5. Conclusions

We have shown that the low energy alpha-4°Ca elastic scattering data is qualitatively
consistent with the dispersion relation. The behaviour of the real volume integrals near
Coulumb barrier in nicely reproduced by the DR. However, the energy dependence of the
real volume integral beyond 80 MeV is more than required by the empirical data. Any
nonlocality present in the real potential has been shown to worsen this disagreement.
This difficulty, also found earlier, has been shown to be intimately related with the
ambiguities in the high energy behaviour of the imaginary potential. Further, our
results suggest that there are real difficulties in the use of full DR which require further
theoretical efforts.

To avoid the above difficulty we have successfully used the empirical result that the
surface type of imaginary potential vanishes at high energies. The surface imaginary
potential has been shown to give rise to a real surface term through the DR. Our cal-
culations show that this surface real term is attractive below 30 MeV, repulsive beyond
30MeV and vanishes at high energies. We have been able successfully to account the
alpha-*9Ca elastic scattering data in the energy region 18 < E < 100 MeV with this
additional real surface term without any additional parameters. Our analysis indicates
an iterative procedure: Using the empirical Wy(E) to calculate AVy(FE), add the cal-
culated AVy(E), varying Wy(E) would then redetermine AV4(FE). We have performed
the first cycle of this iteration to show that the elastic scattering data is consistent with
the DR real surface term. Further cycles were not attempted since we feel that the
radius parameter of the surface imaginary potential, ry = 0.62fm, is too small and the
uncertainties in the imaginary potential at low energies are difficult to remove. Our
results suggest a reanalysis of the alpha-Ni data where the empirical analysis indicate
a strong surface imaginary potential at low energies.
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abled him to spend a year at Oxford. We are grateful to Dr. J.R. Rook for many useful
discussions and suggestions. W.H. also thanks Prof. I. Ahmad for introducing him to
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References

[1] °)C. Mahaux, H. Ngo: Nucl. Phys. A378 (1982), 205; and references therein; P.E. Hodg-
son: Proc. Int. Conf. Nucl. Reactions, Calcutta 1989, World Scientific (1989), 39; Int.
Conf. on Nucl. Data for Science and Technology, Julich (1991): J.P. Delaroche, W.
Tornow: Phys. Lett. B203 (1988), 4;



492 W. Haider, P.E. Hodgson

[2] C. Mahaux, H. Ngo, G.R. Satchler: Nucl. Phys. A449 (1986), 354; M.A. Nagarajan,
C. Mahaux, G.R. Satchler: Phys. Rev. Lett. 54 (1985), 1136;

[3] A.C. Merchant; K.F. Pal, P.E. Hodgson: J. Phys. G15 (1989), 601;
[4] D.F. Jackson, R.C. Johnson: Phys. Lett. B49 (1974), 249;

[5] F.G. Perey, B. Buck: Nucl. Phys. 32 (1962), 353;

[6] P.P. Singh, P. Schwandt, G.C. Yang: Phys. Lett. B59 (1975), 113;

[7] Th. Delbar, Gh. Gregoire, G. Paic, R. Ceuleneer, F. Michel, R. Vanderpoorten, A,
Budzanowski, H. Dabrowski, L. Friendl, K. Grotowski, S. Micek, R. Planeta, A. Strza-
Ikowski, K.A. Eberhard: Phys. Rev. C18 (1978), 1237;

[8] R. Lipperheide, A K. Schmidt: Nucl. Phys. A112 (1968), 65;

[9] G.R. Satchler: Direct Nuclear Reactions (Oxford, 1983);

[10] G. Passatore: Nucl. Phys. A110 (1968), 91;

[11] A. Budzanowski, H. Dabrowski, L. Friendl, K. Grotowski, S. Micek: Phys. Rev. C17
(1978), 951;

{12] 1. Akmad, W. Haider: J. Phys. G2 (1976), L157;

{13] H.P. Gubler, U. Kiebele, H.O. Meyer, G.R. Plattner, 1. Sick: Nucl. Phys. A351 (1981),
29;

[14] G. Gaul, H. Ludecke, R. Santo, H. Schmeing, R. Stock: Nucl. Phys. A137 (1969), 177;

[15] C.P. Robinson, J.P. Aldridge, R.H. Davis: Phys. Rev. 171 (1968), 1241; J. John, C.P.
Robinson, J.P. Aldridge, R.H. Davis: Phys. Rev. 177 (1969), 1755;

[16] A.M- Kobos, G.R. Satchler, R.S. Mackintosh: Nucl. Phys A395 (1983); 248;

A



