acta physica slovaca vol. 44 No. 4/5. 435 - 443 April 1994

PHENOMENOLOGICAL ANALYSIS OF THE TEMPERATURE
DEPENDENT MAGNETIC SUSCEPTIBILITY WITHIN THE
FIELD-INDUCED GRIFFFITHS PHASE OF FeCly!

Ch. Binek. W. Kleemann”
Angewandte Physik, Gerhard-Mercator-Universitat-GH-Duiburg,
D-47048 Duishurg, Federal Repuhlic of Germany

Received 12. April 1994, accepted 8 June 1994

In the presence of an applied axial magnetic field ., the uniaxial antiferromag-
net FeCly shows fluctuating domain-like antiferromagnetic correlations above the

phase boundary T.(H,). They give 1

: 1o a field-induced Griffiths phase at tem-
peratures T within T.(Ha.) < T < Tx. The fluctuating correlations are de-
tected by SQUID measurements of the lowfrequency out-of-plase susceptibility

"

X - A distinct change of curvature of \  vs 7" at the Néel temperature 7'y

explained in terms of fluctuating distributions of demagnctizing fields and. |

transition temperatures. Within Landaun theory a phenomenological 7. (i

tion allows unequivocal modeling of /: vs T at T'> T.(H,). For sub-tricritical

o accouut hoth
critical fluctuations at T.(H.) and non-critical Grifiths-type fluctuations within
T.(H.) < T < Twn. Best fits reveal discontinuities of au/:\h:m in the vicinity of
Tn thus confirming the expected high-T boundary of the field-induced Criffiths
phase.

fields the analysis may be extended to helow 7,.(/l,) by taki

1. Introduction

The Griffiths phase conjecture [1] is based on the idea of “local” phase transitions
in a diluted system due to the finite probability of arbitrarily large pure and differently
diluted clusters. For a ferromagnet with diamagnetic dilution. x. the magnetization
1s expected to be a non-analytic function of the maguetic field for any temperature.
T'. within the so-called Griffiths phase T.(x) < T < T.(x = 0). On the one hand. if
@ does not exceed the percolation limit. x,, static critical behavior charactorises the
global phase transition at T.(x) > 0. On the other hand. anomalics. it any [2].
pected within the Griffiths phase. However. Griffithss original lts. which

X

igore

"Presented at MECO (Middle European CoOperation) 19, Smao
Ze-mail address: binek@kleemann.uni-dnisburg.de

S Brati

0323-0465/94  © lnstitute of Physics,




Ch. Binek and W. ammSm:S

the magnetization could influence the magnetic properties. To the best of oup know].
e chizat Bt . | : €S owl-
edge, there is still no convincing experimental evidence of its very existence up to

.m.m,., the wide temperature regime of extreme slowing-down of the dipolar mm_wxmﬂws., _
in the relaxor ferroelectric PbMg,/3Nby;303 (PMN) has tentatively been attributed AMM

a Griffiths phase [3]. However, this interpretation is seriously cast in doubt by i
ing _.mzao_:-m.m_m mechanisms to be responsible for the diffuse phase transition MMES
[4] ., An experimental hint at a dynamical signature of the Griffiths phase in the qjj :
.Em_mm:vmw.m. antiferromagnet KMNg 3Nig 7F3 was derived from inelastic neutron momzim
Ing experiments [5]. They were explained by use of the theoretical prediction [6 %7
that the time dependent spin-autocorrelation function should decay more slow] mrvm_
exponentially within the Griffiths phase in contrast to the purely @Go:mziiwm -
expected for the baramagnetic regime. This conjecture is confirmed by recent ZMQ“%
Carlo studies of diluted Ising ferromagnets [9]. However, clear experimental verific em_ :
of this subtlety is still lacking. \ en
Hrm uniaxial antiferromagnet FeCl, shows in the presence of an applied axial ma

netic field H, quasicritical domain-like fluctuations within the temperature Hmmmam
Te(Hy) < T < T.H, H:ov = Tn. They give rise to anomalous contributions to the
magnetic loss function ' at low frequencies 0.1 < f < 10H 2. Analogously as argued
for the Griffiths phase in diluted ferromagnets we attribute the temperature anmBo
nﬁ.ﬁtﬂav < T < T~ to afield-induced Griffiths phase. [10] Compared to the diamagnetic
dilution x, which reduces the ferromagnetic order, the homogeneous external magnetic
field weakens the antiferromagnetic order of the metamagnet. The field-induced Grif-
m:;. phase has its experimental manifestation in the temperature dependence of y". In
wm,_.:o:_ma we showed that mk:\mﬁ changes kinklike at Tv. We suggest that fluctuat-
ing demagnetizing fields locally diminish the applied field such that internal fields, H;
a:.ﬁw local phase transitions at T.(H), where 0 < |H| < H,. Hence. analogously Hnw 25_
Q:mm.zwm scenario of the diluted ferromagnet [1] we mxvmlnp local m,::wm:oammzmso phase
transitions throughout the above teniperature regime, which is conventionally denoted
as paramagnetic. In contrast with the conventional Griffiths phase, which is due to
w.mﬁ:o distribution of local concentrations z1 with 0 < 2, < 2, ro?m,\mw a dynamic
Em:__u,:So: of local fields 0 < |H| < H, is involved. This is accounted for m: our inter-
pretation, which considers fluctuating domain-like antiferromagnetic correlations giving
rise to the observed contribution to X" at low frequencies. The aim of this paper is to
m:osw .ﬁ_rwn the assumption of distribution averaged quasicritical fluctuations [10] may
mw%:n;% be used to model an analytic expression for the temperature dependence of |

Ww\ym\on mﬁ@:m_ﬁmm:m&omm_%mvoﬁm:avm_os the applied tricritical field H, = 0.84
m. -

2. Experimental details and results

A commercial SQUID magnetometer (Quantum Design MPMS 5S) was used to
measure the temperature dependence of the in-phase and out-of-phase parallel magnetic
susceptibility in the low-frequency range 0.1 < f < 10 Hz at constant fields 398 <
H, < 1592 kA/m. A Bridgman grown FeCl, crystal was prepared in a dry helium
atmosphere to obtain a thin (0001) oriented sheet of size 3.4 x 2.3 x 0.28 mm?3. In order

nvok.
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Fig. 1. " vs T of FeCly measured at f=5 Hz

and H,=0.96 MA/m (curve 1) and H,=1.43 Fig. 2. x" vs T of FeCl, measured at f=5
MA?m (curve 2). The solid lines are least- Hz and H,=0.6 MA/m (circles) and least-
squared fits to Eq. & Their second deriva-  squares fit (solid line) to the data within
tives with respect to T are shown in the inset 17 < T < 35 K. The inset shows \" vs T
as curve 1’ and 2', respectively. T is marked for 22 < T < 35 (circles) with a best-fit (full

by an arrow. line) for the data within 22.4K < 7T < 35K.

to determine the Néel temperature, Ty, we measured the temperature dependence of
the magnetization M vs T in a very low field, H, = 0.8 kA/m, and obtained T = 23.7
K from the peak of dAM/dT. Figure 1 shows the out-of-phase compaonent v of the
ac susceptibility versus temperature at constant frequency f = 5 Hz and field values
Hy = 0.96 (curve 1) and 1.43 MA/m (curve 2). Figure 2 shows x: vs T at f = 5 Hz for
H, = 0.6 MA/m. As a rule, both positive and negative slopes, Qz:\mﬁ are observed
within the Griffiths range T.(H,) < T < Tx. This is most pronounced for external
fields H, < H,. As shown in Figure 2 2.: vs T starts at T > T.(H,) with values close to
zero and positive slope, passes a maximum and decays gently as ohserved for H, > H,
(Figure 1). In the latter case ..4: vs T starts with a finite value at the upper mixed
phase houndary, T' > T.(H,). It will be shown that the entire variety of different curves
Y vs T can be modeled by the same analytic expression.

3. Theory and comparison with experimental results

The metamagnetic transition of FeCly is characterised by a mixed phase region where
antiferromagnetic and quasi-ferromagnetic (“saturated paramagnetic”) phases coexist
(Figure 3). This static domain state is caused by inhomogeneous demagnetizing fields.
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Fig. 3. Hovs T phase diagram of FeCl, (solid circles [18]) with elliptical antiferromagnetic
domain-symbols (full lines) in the mixed phase (AF+PM, limited by the transition fields H,
and Hz) and symbols for domainlike fluctuations in the field induced Griffiths phase (GP,
dotted lines). Tricritical Néel temperatures, T; and Ty, are indicated by an arrow and a
vertical dashed line, respectively. Horizontal arrows denote the isomagnets, along which the
ﬁ\\ i i ¢

£ vs T data in Figures 1 and 2 are taken.

In analogy with the behavior of Ising ferromagnets, where domainlike order parameter
fluctuations above the phase transition are well known [11,12.13], we assume that the
static inhomogeneity of the mixed phase becomes dynamic above the phase transition.
A signature of this behavior is already found in the field dependence of the static mag-
netization. It shows rounding close to the paramagnetic saturation which has to be
interpreted in terms of fluctuating demagnetizing fields. They locally allow for antifer-
romagnetic order and, hence, reduce the total magnetization [10]. A similar situation
applies to a horizontal passage through the H,—T phase diagram (Figure 3) at H, > H,
or H.y, respectively. Here we expect a fluctuating distribution of the local internal fields
H; at any fixed value of T > Te(Ha). The Fourier transform of the demagnetizing field
can be expressed within the magnetostatic approximation as hiq) = lQEASVM\%
where m(q) is the Fourier transform of the magnetization. O,i:w to the unambigu-
ous relationship T, = T.(H,) at the static phase boundary (Figure 3) simultaneously
a distribution of different phase transition temperatures within TAH,) <T. <TInis
encountered. Within the concept of local transition temperatures [14] we introduce the
probability P(T", T,)dT. to find a critical temperature within the interval [T5, T, + d7Te]
at a given temperature 7. The quasicritical fluctuations of the antiferromagnetic order
parameter 7, which are involved for any 7, with finite probability can be described
within the framework of the Landau theory of fluctuations near second-order phase
fransitions [15,16]. The autocorrelation function § = {Intq)?]) is given by

S = (k) [V (byy + Dy)] M

Phesde

where 17 is sample volume, Gy the secand derivative of the Landau expansion of the
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Table 1 Best-fit parameters to Eq. (8) and quality parameter Q (see text) for the y"” vs T" data
presented in Figures 1 (H, = 0.96 and 1.43 MA/m, fitting range 19.9 < 7' < 35K) and 2 (Ha
= 0.6 MA/m, fitting ranges 17 < T < 35K and 224 < T < 35K, respectively).

[H. 0.96 MA/m 1.43 MA/m 0.6 MA/m 0.6MA/m
fitting range | 19.9 <T < 35K | 19.9 <T <35K [ 17 < T < 35K | 224 < T < 35K
P 3.4067 3.5150 0.1546 0.4022
b 118.14 172.91 29.166 71.111
T, 17.303 15.008 22.005 20.323
Tn 23.086 23.717 25.851 27.358
Ao/Dq’ 0.9248 1.0238 1.1698 1.3524
Q 6.598 10~°F 1.057 10~°F 1.073 107° 2.488 1077

Gibbs free energy density ¢ at the equilibrium point 17 = 1. It is given by
$un = mAo(T/T, — 1) (2)

with m = —2 and +1 for T < T, and T > T, respectively. 1/2 Ao(T/T, ~ 1) and D/2
are the expansion coefficients of the quadratic and the gradient term of ¢, respectively.
From the fluctuation-dissipation theorem it is known that X is related to the power
spectrum of the magnetization fluctuations [15]. These induce fluctuations of the an-
tiferromagnetic order parameter by coupling of m to n at site 1 via the relation [17]
2m(r) = (¢V)n(r), where ¢ is the basis vector along [0001]. Hence, y" is also related
to the autocorrelation function of the antiferromagnetic order parameter § = (In(g)?]).

One expects the proportionality S « v, although y" refers to the ferromagnetic re-

sponse. Averaging the order parameter fluctuations by the T.-distribution function

P(T,T,) yields
1

RI
T T(H)

7"

¥ P(T.T,)S(T T))d. (3)
The factor 1/T is the classical residuum of the Bose-Einstein factor which enters the
fluctuation-dissipation theorem.

In order to obtain an analytic expression for x" vs T we propose the following
Lorentzian ansatz for the distribution function:

=

(LT

1

1
PTT)=

(4)

where T, = T.(H,), T. < ﬂx\ < Twn. ¢ = b/T and b=constant. Eq (4) ensures the
following physically motivated properties:

. ! - . f: .. o
(i) P(T.T,) maximises at T, = T,, where the global phase transition takes place with
. " N . P F % B
contributions to x by one order of magnitude large than within the Griffiths
. " o
regime 77 > T,.;
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(i1} P(T. 7)) decreases as T, — Tx. where T denotes the largest possible crit
temperature: ; ow_

(ui) P(T. T.) becomes narrower with increasing T', since ¢ = b/T is proportional tq wwm
halfwidth,: at 7> T, only contributions referring to T, ~ T, will be relevant,

The normalization factor of the probability density P,

. 1 Tn —T.
N = —arctan N -

= < ) - ®

as obtained by integrating P(T, T.s) over the Griffiths regime, 7, < T/ < Ty, is Sm@.E

T dependent. However, inspection shows that its temperature dependence is :mm:m:v_w
when compared with that of P and §. Hence, for simplicity we treat N as a constant
which is ahsorbed by the constant b and the unknown proportionality constant betweeq

"

\ and the averaged order parameter fluctuations. Inserting equations (1) and (4) into
(3) vields

2 = T~ T
TV Jr. (2 (T, - T )2 mA(T - T.}+ DgT.)

d7 (6)

The main contribufions to the integral arise in the quasicritical temperature regime,
T. ~ T. Hence. after substituting T,» = 7" — = into (6) and integrating with respect
to 1t is meaningful to make a series expansion of the integrand up to first order in z.
This vields

" £ *

X X mﬂx
T=T. :
3 1 2DG TT = To) — ms 22 2
X . . S q¢-T(T : T.) EL:;HJ .+ Qﬂ 7)°) dz (7)
) @ =Ty (2 + (T. = T))) Dg*T)?

Note thal m is also a function of temperature which can be taken into m.ooozzn.g
splitting the integral into two parts with 7 > T and T < T.. respectively. After
integration we obtain ‘

" £ .

VW DEE (T T )

Tn — 1.+ 7...+.“.,m‘,\;.¢..:2u1 T (T =Tw)?)

if T<In

=T =Ty i T >IN

Phenomenological analvsis of the temperature. . 441

It can easily be shown that d2\" /dT? changes steplike at T = Tv. This was already
shown by the general consideration in [10] and is, hence. not due to the special choice
of the distribution function.

The full lines in Figure 1 show the least-squares fits of Eq. (8) to the \" vs T data
within and above the field-induced Griffiths phase for external fields above the tricritical
field H;. The four best-fit parameters b, T,., Tn and Ag/Dg¢”, which enter Eq. (8), are
summarised in Table 1. The proportionality constant P contains the factor (7V Dg®)~!.
The quality parameter @ is defined as

SN (Flai) - Y

— i=1
Q= N—n (

e

where N is number of data points, n the number of fitting parameters, (;,Y;) are the
data points and f(&;) are the corresponding values of the fitting function. The data
which are involved in the fitting procedures are those between the beginning and the
end of the full lines drawn in the figures.

The two parameters T, and T correspond to the onset and the high temperature
boundary of the field-induced Griffiths phase, respectively. In accordance with the
general arguments outlined in {10] the inset in Figure 1 shows steplike changes of the
curvature of the least-squares fits to curves 1 and 2 (curves 1’ and 2°). These steplike
changes coincide with the experimental value of Tw within errors of 2.6 and 0.1%,
respectively. Curve | shows that .x: steeply increases when lowering T to below T,.(H,).
This is due to non-critical loss mechanisms owing to the static disorder of the mixed
phase which are not included in our model. The fitting parameter T, indicates the
onset of the regime of quasicritical fluctuations. It coincides within an error of 12.2%
with the experimental value 7. = 19.7K. Curve 2 does not include additional non-
critical losses, because the applied field H, = 1.43 MA/m slightly exceeds the phase
boundary for all temperatures (cf Figure 3). Hence, there is no critical temperature
responsible for a phase transition. This is qualitatively taken into account by the
low value of T.(H,) = 15.008K. Moreover, the width of the T.-distribution function,
which is proportional to the parameter b, becomes larger with increasing field. This
is compatible with an increasing number of local phase transition temperatures which
are involved, when the critical temperature of the global phase transition is reduced.
Note that this argument must break down for applied fields much higher than /..
Owing to increasing homogeneity of the magnetization additional contributions to the
demagnetizing field arising {from divA{ # 0 are no longer allowed. Hence, even locally,
the total compensation of the applied field is no longer possible.

We now examine the behavior of A vs T for the sub-tricritical field H, =0.6 MA/m.
In afirst attempt it seems to be reasonable to fit only the data above the deep minimum
of \" vs T al T > 224K to Eq. (8). The inset in Figure 2 shows the result. Table |
r. the good quality of the fit as evidenced
al

3

. Howe

summarises the r

ulting paramete
by an extremely small Q-valie is cast in doubt by the large deviation between the
and the fitted Ty value: ATv= 3.6K. F
the ratio of the parameter A,/ Dq” is about 30% larger
the ¢

ore. in comparison to both other fit

This can be interpreted as
o gl

an ptnvolved T facet.

lation | second-order phase
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:.m,:w,:,mo: 1s m,amo::um_:mma by critical fluctuations with diverging correlation length. The
Mmaxinmum 0w X vsT at T, = 21.2K marks this transition. In contrast to the maximup,
in the the x vs T curves which arise from the disorder of the mixed phase, the critica)
fluctuations are included in the model. Hence, we can extend the fitting procedure to
the entire temperature range. The result is shown in Figure 2. The best fitting curve
seems qualitatively to describe all relevant features of the data. On the one hand, the
global phase transition is correctly modeled. On the other hand, the Griffiths wmmwSo
which begins already at the large maximum of y"vs T, is qualitatively described. F.
contrast with the high field behavior of v.\:, the fluctuations have a prominent minimum
within the Griffiths regime. It is due to the vanishing fluctuations of the global phase
transition above T.(H,). This minimum is followed by a superposition of quasicritical
fluctuations which cause y” to increase again. In addition, it is satisfying to observe
that Ty approaches its expected value.

4. Conclusion and outlock

It is shown that the uniaxial antiferromagnet FeCl, in an axial field gives rise to
a Griffiths phase-like phenomenon. The temperature dependence of its out-of phase
susceptibility can be described within the framework of order parameter fluctuations,
which are w<o5m&:v% a physically motivated T, - distribution function. The different
characteristics of X vs T for fields above and below the tricritical field can be modeled.

The poor quality of the least-squares fit of the data obtained for a sub-tricritical
field shows that the calculation requires further improvements. Within our model two
straightforward refinements are obvious. On the one hand, higher members of the series
expansion. which was introduced to solve the averaging integral (6), have to be taken
mto account. On the other hand, integration in q-space has to be considered. The model
deals with a single wave vector ¢. This is reasonable in the case where only quasicritical
m:.na:mio:m are involved. The main contributions to the fluctuations and, hence, to x:
arise from the smallest ¢ value, which corresponds to the restricted antiferromagnetic
correlation length owing to the local character of the fluctuating demagnetizing fields.
However, the global phase transition is affected by the average internal field. Hence, the
smallest ¢ value of the critical fluctuations is limited by the finite sample dimensions.
This explains the more rapid thermal decay of the critical fluctuations compared with
that of the quasicritical fluctuations which are responsible for the Griffiths regime. Very
probably the model would be improved by properly taking into account two different
scales of correlation lengths.

The analysis of the frequency dependence of Y~ is another remaining challenge.
It would allow to include non-equilibrium effects i.e. dynamical rounding. There is
bresently no hope to find a correct analytic expresion of the 7. distribution function

without further assumptions. Monte Carlo simulations might be appropriate to describe

the complicated dynamic demagnetizing processes.
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