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A three-dimensional Fermi-liquid is considered with an instantaneous short-range
interaction between the particles. The attractive interaction enables the formation
of bound fermion pairs, which behave as bosons and condense to a superfluid at
sufficiently low temperatures. Within the framework of many-body quantum-
field theory we derive self-consistent equations for the fermion Greens function
G and the vertex function T'. While in mean-field approximation we obtain the
BCS theory for weak coupling and the superfluid weakly interacting Bose gas for
strong coupling, it turns out that in the intermediate region the self-consistency
of the equations is essential for a proper treatment of the complicated interaction
mechanisms of the fermions and the pairs. As a result we obtain a superfluid
transition temperature 7, which increases monotonically with increasing attractive
coupling strength. We find that the bound fermion pairs cause a power-law tail
~k™* in the fermion occupation number n(k) for large k and behave as short-living
quasiparticles in the crossover region indicated by a complex effective mass 2m*
with a large imaginary part.

1. Introduction

Theories of superconductivity in strongly correlated electron systems beyond the Bar-
deen-Cooper-Schrieffer (BCS) theory have attracted a new interest since the discovery
of high-temperature superconductivity in the copper oxides and more recently in the
n-doped fullerites. The main common feature of the high T, superconductors is that
kp€ ~ 10-20 is comparatively small, which is due to the small electron density.ng =
k%./372 of the doped systems and to the small coherence length & reflecting the small size
of the Cooper pairs. In this paper we review the self-consistent theory of the crossover
from BCS nm:wmwooca:osig in the weak-coupling regime kpé > 1 to Bose-Einstein
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condensation of a fluid of tightly bound fermion pairs in the strong-coupling regime:
kpf < 1. This theory has been developed by the author over the last two years [1,2].

The simplest continuum system which exhibits the crossover scenario is a three
dimensional liquid of fermions of spin 1/2 interacting instantaneously via an attractive
potential. The interaction is assumed to be spin independent and of short range. Th,
bound pairs that may form are assumed to have zero spin. The theory which is des
scribed in this paper treats the problem by the method of many-particle quantum-field’
theory with temperature dependent Greens functions [3,4]. It is well known that sus
perconductivity can not be described by standard perturbation theory. Much more the
perturbation theory must be modified by resumming part of the Féynman diagrams
Superconductivity in a fermionic system is related to two different phenomena which"
must be treated properly in a successful theory. First, the attractive interaction between
the fermions leads to the formation of bound pairs. Second, at low enough temperature
the bound pairs condense into a macroscopic quantum-mechanically correlated state
and form a superfluid. The first phenomenon is of microscopic nature and. is properly
treated by a resummation of topological classes of diagrams in the four-point vertex
function T', which leads to the Bethe-Salpeter equation. The second phenomenon is
taken into account by the partial summation of self-energy subgraphs which leads to
the Dyson equation. This implies that in the remaining Feynman diagrams (skeleton
diagrams) the fermion lines are identified as the exact fermion Greens function G so
that the resulting equations for G and I' are self consistent. While G describes the
fermionic degrees of freedom, T is the effective scattering amplitude and plays the role
of the boson propagator in the strong-coupling limit.

The crossover problem has been first investigated by Leggett [5] at zero tempera-
ture. Via a variational ansatz with a BCS trial wave function he derived two equations
to determine the energy gap A and the chemical potential y as functions of the cou-
pling strength at T' = 0 and for constant fermion density np. This variational ansatz
has also been applied to the two-dimensional fermion system by Randeria, Duan, and
Shieh [6]. Noziéres and Schmitt-Rink [7] have extended the theory to finite temper-
atures by using the formalism with temperature dependent Greens functions and the
ladder approximation, but without self consistency. While this theory was designed..
for T > T,, they determined the critical temperature 7, in the whole crossover re-
gion from weak to strong coupling by the Thouless criterion [8]. A third approach is’
due to Drechsler and Zwerger [9]. Starting from a functional integral representation of
the interacting fermion system Drechsler and Zwerger introduced the order parameter
A(x,7) via a Hubbard-Stratonovich transformation. Integrating out the fermion de-
grees of freedom and expanding in powers of A(x, 7) they obtained a Qimvcnm.hmbamr
theory. Though this theory. was originally designed for a two-dimensional system [9],
it has been extended recently to three dimensions [10]. S4 de Melo, Randeria, and En:
gelbrecht [11] have proposed a time dependent Ginzburg-Landau theory, and in close
analogy to [7] they determined the superfluid transition temperature 7. which exhibits
a small maximum in the crossover region.

All these previous theories are based on an approximation scheme which is equiv- "
alent to a mean-field approximation and which uses free fermion Greens functions to -
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take the fermionic degrees of freedom into account, while the bosonic properties lead
to the superfluid transition. In the two limiting cases of weak and strong coupling this
approximation leads to correct results. However, in the crossover region this approx-
imation is invalid because the fermionic quasiparticles are rather short living and far
from being free particles. Furthermore in this approximation in the strong-coupling
regime the interaction between the noncondensed bosons is missed. Thus it turns out
that self-consistency is essential in the crossover region to treat the nontrivial spectra
and the complicated interaction mechanisms of the short-living fermionic and bosonic
quasiparticles correctly.

In section 2 we derive two sets of self-consistent equations for the fermion Greens
function G and the vertex function I'. We assume a dilute Fermi liquid with short-range
interaction between the particles where the fermions are moving sufficiently slowly (at
low temperature). Thus we can use the ladder approximation for the vertex function,
and the interaction is taken into account satisfactorily by the inverse s-wave scattering
length nmu of the fermions. In section 3 we consider the mean-field approximation which
turns out to be good in the two limiting cases of weak and strong interaction. While for
weak coupling the BCS theory is recovered, in the strong-coupling limit the theory of
the superfluid weakly interacting Bose gas is obtained where the bosons are identified
as fermion pairs. In this way it is shown that the self-consistent theory describes the
two standard possibilities of superfluidity as limiting cases within a unique framework.
We have solved the self-consistent equations numerically for different coupling strengths
at the superfluid transition T' = 7. In section 4 we present our results for T, and g,
as functions of the coupling strength. It turns out that 7T, is a monotonic function for
increasing coupling strength in contrast to the results of the previous theories which
neglect self consistency. Furthermore we determine the effective mass 2m* of the bound
fermion pairs and the fermion occupation number n(k). Due to a damping mechanism
related to the pair breaking and recombination the effective mass 2m* becomes complex
in the weak-coupling and the intermediate regime. The bound fermion pairs cause power
law tails ~£~* in the fermion occupation number n(k) for large momenta k.

2. The self-consistent equations for superfluid dilute Fermi liquids

The fermionic degrees of freedom of a superfluid Fermi liquid are described by the
normal Greens function

(T, (%1, T)VE, (x2,72)]) = 010, - G(x1 — %o, 71 — T2) (2.1
and the anomalous Greens function
AH,TF:ANT \Jv@q”?ﬂmv ﬂwvu_v = €o105° .NulAuﬁH — X2,T1 — q.mV AMMV

Since we assume that the interaction between the fermions is spin independent and the
pairs that may form have zero spin, the normal Greens function is diagonal and the
anomalous Greens function is antisymmetric in the spin indices. This fact is represented
by the Kronecker symbol é,,,, in (2.1) and by the two-dimensional Levi-Civita tensor
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€010, 10 (2.2). Tt turns out [1] that in the field-theoretic considerations the spin indices
need not be treated explicitly. The spin-degrees of freedom are sufficiently taken intq
account by a factor 2 for each closed fermion line in a Feynman diagram. Thus the

. fermion Greens functions (2.1) and (2.2) can be taken together into a 2 x 2 matrix
Greens function Jo g

G(x, 1) F(x, 1)
(Garas(x,7)) =
Fr(~x,7) —G(-x,-71)

We define the Fourier transformed Greens function Go,as(k,wn) by

Bk 1

Goyan(x,7) = % 3 Mumxvrdcn — )] Gayos (K, ) Aw@ w,., o

where k corresponds to the momentum of the fermions and wn = 7(2n + )kgT/h
is the fermionic Matsubara frequency. Now, applying the formalism of many-particle
quantum-field theory the fermion Greens function Go,a,(k,wy,) can be expressed in
terms of the self energy ¥, ,,(k,w,) by .

) = —iheslh, s, + €k Yoros — ayag(kywn) G.wv.

where €} = h?k?/2m — 4 is the energy spectrum of the free fermions and (Yorap) 18
a diagonal matrix similar to {(aray) but with the diagonal elements 1 and —1. In
perturbation theory the self energy X is given by all one-particle irreducible Feynman
graphs with two amputated external lines. However, since superconductivity is not
accessible perturbatively, we must sum up the diagrams partially. Dyson’s equation
implies that the self energy ¥ can be expressed in terms of the exact matrix-Greens
function G and the exact four-point vertex function I'. This is shown in Fig. 1 in terms

of Feynman diagrams where the indices and arguments are suppressed for simplicity: -

In Fig. 1a one clearly sees that the higher order diagrams of the self energy ¥ are
represented by the vertex function I' which is given by the infinite perturbation series
of Fig.1b. The interaction between the fermions is represented by the elementary vertex
shown in Fig. 1d. In all the diagrams of Figs. la and 1b we assume that already a
partial summation over all self-energy subgraphs is performed. Hence the full lines
in the diagrams are identified as the exact fermion Greens function G (Fig. 1c). An
orientation of the propagator lines is not necessary because the matrix Greens function
(2.3) includes both directions. Thus one clearly sees that Eq. (2.5) together with the
Dyson equation in Fig. 1a and the vertex function in Fig. 1b form a closed set of self-
consistent equations for the fermion Greens function G and the vertex function I'. Since

G and I' are matrices which have nonzero nondiagonal elements below T}, the anam& %
summation over all self-energy subgraphs leading to the self-consistent equations is the

essential tool for describing the superfluid state.

A second partial summation of the diagrams of the vertex function in Fig. 1b is. :

necessary to account for the formation of fermion pairs. To do this we divide the Emn#m.
set of diagrams into different topological classes as shown in Fig. 2a. The shaded circles:.
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Fig. 1. (a) Dyson’s equation for the self en-
ergy ©; (b) the infinite perturbation series for
the exact vertex function I'; (c) full lines in
the diagrams correspond to the exact fermion
Greens function G; (d) the elementary vertex
V.

LID GEID @) = i) =" g
B = X+ X

Fig. 2.(a) The vertex function T (solid cir-
cle) expressed in terms of an infinite sum of
topological classes of diagrams. The shaded
circles on the right hand side represent the
irreducible vertex function, which is a par-
tial sum of vertex subgraphs. The diagrams
on the right hand side do not fall into two
pieces if any two fermion lines inside one of
the shaded circles are cutted; (b) the Bethe-
Salpeter equation for the vertex function [,
which is obtaind by summing up the infinite
series of topological classes as a geometric se-
ries.

on the right-hand side respectively represent the irreducible vertex function which is
a partial sum of an infinite number of subgraphs. The irreducible vertex function is
defined in such a way that the diagrams in Fig. 2a do not fall into two pieces if any two
fermion lines inside one of the shaded circles are cutted. The infinite series of topological
classes on the right hand side of Fig. 2a can be summed up as the geometric series.
The result is the Bethe-Salpeter equation for the vertex function ' which is shown in
Fig. 2b. This equation is well suited to describe the formation of bound fermions pairs.

Until now we have described the exact theory. The self-consistent equations are given -
by (2.5), Fig. 1a, and Fig. 2b. The nontrivial infinite perturbation series is contained
in the irreducible vertex function, which may be interpreted as an effective interaction
of the fermions. Now, within this infinite perturbation series the approximation has to
be performed. In the lowest order approximation we only take the leading contribution
into account and thus replace the irreducible vertex function (shaded circle) by the bare
interaction potential (elementary vertex, Fig. 1d). In this way we obtain the vertex
tunction in ledder approzimation [3,4] which is known to be a good approximation for a
dilute system of fermions with a short-range interaction: Furthermore we assume that
the fermions are moving slowly (at low temperature) and may form pairs with spin
zero. Thus the details of the interaction potential V(r) are not needed. According to
Galitskii [12] and to Gorkov and Melik-Barkhudarov {13] the interaction potential can
be replaced by the scattering amplitude T' (the so-called T matrix) so that finally the
interaction is satisfactorily taken into account by the s-wave scattering length ap of
the fermions. Neglection of the particle-hole scattering reduces the vertex function to a
2 x 2 matrix Ty, q,(K, Q) which depends on the momentum AK of the mass center of
the two incoming or outgoing fermions and on the related bosonic Matsubara frequency
2, = 2mnkgT/h. Since the s-wave scattering is isotropic, the vertex function does not
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depend on the relative momenta of the incoming and the outgoing particles. This leads

to a considerable simplification because the Bethe-Salpeter equation becomes a simple -

algebraic equation which is solved easily by a matrix inversion.

More details of the approximations are found in Ref. 1. Now we present the resultip
self-consistent equations. In the ladder approximation the Bethe-Salpeter equation Aw_mm
2b) implies that the two terms of the self energy in Fig. la can be combined into w..

single one-loop diagram with an exact I' (solid circle) as vertex. Thus in real space the.

Dyson equation (Fig. 1a) can be written simply as
MUGSQMTP q.v = QDNQ~A|Nv |q.v ) ﬁcﬁoﬁﬁuﬁ .ﬂv 5 Awmv

The Bethe-Salpeter equation reduces to an explicit expression for the inverse vertex

function
m

4h?
where in real space the kernel is p

HJAISHQmAmA“ @:.v =

4mh?
m

EGSQM ﬁunu .ﬁv = ' _H —Qn:muu?n_ ﬂv_& - ¢ %QMQMQANV -h MU %Aﬂ - Sm\mv H_ £ Awmv

Thereby ¢ is an infinite renormalization constant which is defined such that Mg, 4, (x, )
is obtained in dimensional regularization (see Ref. 1). For dimensions 2 < d <4
this renormalization is needed in the procedure of replacing the interaction vop.mm;m&
by the scattering amplitude. The self-consistent equations (2.5)-(2.8) represent the
simplest model for a continuous interacting Fermi system which exhibits the crossover
scenario from BCS superconductivity to Bose-Einstein condensation of tightly bound
vmwnm_ where the interaction is parametrized by the inverse s-wave scattering length
ap'. It turns out that the conservation of the particle density is not invalidated by the
approximations. The interaction is weak for nm.H <& —kp and strong for amH > +kp,
where kp = (372nF)/3 is the Fermi wave number. The threshold where in scattering
theory a virtual state turns over into a bound state is located at amu = 0. The crossover
scenario happens in the interval —kp S ap' S + kp. e

3. Mean-field approximation and the limiting cases of weak and m:mb.% *
interaction s

Since the vertex function 'y, q,(K, ) describes the bosonic degrees of freedom of ro ,

system and in the strong-coupling limit it becomes even proportional to the boso

Greens function of the pairs, it is natural to define the order parameter A of, w.n,rw

superfluid transition by

2 — 0
un_wmwOH,QpQuAN“ﬂv - H,c:oﬁ

with
_D_m Dm

Il

(Far02) L
(A7) |AP

[a5' baje, + Maya,(K,Qn)] Qd
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While the self-consistent mn:miosm.om: not be solved analytically in general, a mean-
field approximation can be constructed in the following way. Inserting approximately
I'2 4, for the vertex function into (2.6) then (2.5) and (2.6) can be solved ezactly for the
matrix Greens function. As a result we obtain the mean-field normal and anomalous
Greens functions
1 9 1

7 = emmu.lil s

—thwy, + B thwn, + By

G(k,wa) = (3.3)

A

1 1
Flwn) = —2 ugy - 4
(k,w v _D_ Uk Yk ﬁls.?tan_r.m.\,ﬁm + ihwn, + m.wm“— ) G v

respectively, where E} = [ei+ |A]2]!/? is the energy spectrum of the fermionic quasi-

particles and uy = (Ey+eg) /2By ] and vy = [(Ex—ex)/2E]"/? are the coefficients
of a canonical transformation which satisfy the relations :W+ew =1, :wn Iewn = e/ Fy,
and up vy = |A] /2Ey. Obviously, Egs. (3.3) and (3.4) represent the well known nor-
mal and anomalous Greens functions of the BCS theory which, however, in this case
are defined for arbitrary coupling strengths. Inserting these Greens functions into (2.8)
and calculating the vertex function by (2.7), we obtain from (3.1) and (3.2) the self-
consistency condition which in the thermodynamic limit leads to the well known BCS
gap equation to determine the order parameter (energy gap) A. Thus it turns out that
in the weak-coupling limit the results of the BCS theory can be recovered. Especially
for the superfluid transition temperature we obtain the well known result [5]

T. = ('8 /7)-(8/€*) - (er/kp) - exp(n/2krar) (3.5)

for ap! < —kp (where yg = 0.5772 is the Euler number).
In the strong-coupling limit nm.H — 400 the inverse matrix vertex function (2.7) can
be evaluated explicitly. We obtain 1]

3 ?K? |, 18 4
Aﬂlu K.0 vle __ 1 —thQy, + *5 =+ _.wlm_ql I%ml..
anaa T2 grelal e ihQ, + BEZ 12l

2¢p 4am 2¢p

(3.6)
for amH > +kp where ¢, = h*/maZ is the binding energy of the pairs. In this formula
one clearly sees that the matrix is an inverse matrix Greens function of a bosonic
system. Thus, in the strong-coupling limit the vertex function T can be identified as
—[87eZa}] times the boson Greeens function of the pairs. Furthermore, one can show
that the main results of the theory of the superfluid weakly interacting Bose gas can
be derived. Especially from the non diagonal elements in (3.6) we read off a repulsive
interaction between the bosons which is due to the Pauli exclusion principle. We find
a boson scattering length which is twice the fermion scattering length, ag = 2ar [1].
This repulsive interaction leads to a slight depression of the transition temperature T,
compared to the temperature of the Bose-Einstein condensation. Thus we obtain

|§%§\w§ H
T, = awmgv .T — -(kpar) + - a.s
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for strong couplings ap' 3> +kp, where -the second term in the square gmnrm&ma :
beyond mean-field theory.

4. Numerical results

The mean-field approximation is good in the two limiting cases but invalid i the
crossover region, because the fermionic quasiparticles have a short lifetime in the jnf;
mediate region while the mean-field Greens functions (3.3) and (3.4) treat the quagis
particles as stable. Thus for intermediatc coupling strengths —kp < ap! < +kp the self
consistency is essential and the equations (2.5)-(2.8) must be solved numerically. Th
can be done by the following iteration procedure. We start by inserting the free (mean:
field) fermion Greens function Gy into (2.8) and (2.6) and then determine T and.g
first order by (2.7) and (2.5), respectively. The next iteration step is done by m,:mm::_m
the first order G into (2.8) and (2.6) again. The iteration procedure is repeated unt
convergence is achieved. It turns out that in practice 13 iterations are sufficient. vgrzm
in (2.5) and (2.7) the functions are represented in Fourier space, in (2.6) and (2:8) 't
functions are represented in real space. Thus we need a numerical Fourier transforma?
tion for performing the iteration procedure. Since the functions G and T have Fathes
nontrivial singularities, we have to transform functions which vary characteristically &
a logarithmic scale over 6 to 10 decades. Since in this case the standard fast Fouriér.
transformation [14] can not be used (because it assumes a constant stepwidth) we havé’
invented a special slow Fourier transformation which is described in the appendix of:
Ref. 2. We discretise the functions over 6 to 10 decades with only 100 points in each
dimension, interpolate the functions in between with cubic spline polynomials, and evals’
uate the Fourier integrals exactly. Since the physical system is spherically symmetri¢
and the Fourier transformations can be reduced to two dimensions, the numerical effort’
is comparatively moderate so that a high-performance computer is not necessary.:i:: i
The results of the numerical calculations are the fermion Greens function-G(k;wy)
and the vertex function I'(K,Q,). From these functions several physical quantities'can
be read off. Since we have performed the numerical calculations for T = T., the mnoim...,
lous Greens and vertex functions are zero. The superfluid transition is determined by
the Thouless criterion [I(K = 0,2, = 0)]7* = 0 [8]. Thus, if the fermion density 7
is fixed, we obtain the transition temperature T, and the related chemical potential g
as functions of the interaction strength amm. It turns out that the self-consistent.equa--
tions (2.5)-(2.8) are scale invariant. Thus it is convenient to introduce dimensionless:
quantities which are scaled with the Fermi wave number kp = (37%np)'/3. In this way
nr is automatically kept fixed. In Fig. 3 we present our numerical result for T¢; versus:
the dimensionless coupling strength v = 1/kpap as full line. One clearly sees:tha
T.(v) is a continuous function which increases monotonically with increasing v.: The
full line interpolates between the BCS result (3.5) for weak coupling (left-hand mm.mrom
line) and the asymptotic formula (3.7) for strong coupling (right-hand dashed line Fo
comparison we have determined T.(v) also from the first order vertex ?noaol,ﬁ.wgmm
iteration). The result is shown as dotted line in Fig. 3. This approximation is equiva
lent to the theory of Nozieres and Schmitt-Rink [7] and to the mean-field theories E“:u
The main feature of these previous theories is the maximum of T.(v) in the crossover
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v=1/lk:23) vz 1/lkeap)

Fig. 4. The chemical potential p. at the su-
perfluid transition as a function of the dimen-
sionless coupling strength v = 1/kpar. The
full line represents our numerical result. The
asymptotic result for the weakly interacting
Fermi gas is shown as left-hand dashed line.

Fig. 3. The superfluid transition tempera-
ture Tc(v) as a function of the dimensionless
coupling strength v = 1/kpar for constant
fermion density np. The full line represents
the numerical result of our self-consistent the-
ory. The dotted line is obtained by neglecting
self consistency and is similar to the results  The right-hand dashed line corresponds to the
of the previous theories [7,11]. The left-hand  binding energy of the fermion pairs divided by
dashed line corresponds to the BCS theory, 2.

(3.5). The right-hand dashed line corresponds

to our first order asymptotic formula (3.7) in-

cluding the interaction between the fermion

pairs.

region, which is clearly seen for the dotted curve in Fig. 3 as a considerable effect.
While Nozieres and Schmitt-Rink have pointed out that this maximum should be un-
physical and presumably due to the approximations, we have found that the maximum
is caused by the deficiency of the interaction between the (noncondensed) bosons in the
mean-field approximation (first iteration). Going one order beyond this approximation,
in the strong-coupling limit we have found a repulsive interaction between the bosons
with scattering length ag = 2ap which causes the second term in the asymptotic for-
mula of T; (3.7). Because of this term T¢(v) is a monotonically increasing function at
least for strong couplings (right-hand dashed line in Fig. 3) in contrast to the dotted
line.

In Fig. 4 the chemical potential p. at the superfluid transition is shown in units of
the Fermi energy ¢z = h%k%/2m as a function of the dimensionless coupling strength
v = 1/kpap. The full line represents our numerical result and interpolates between the
weakly interacting Fermi gas (left-hand dashed line, p. — ¢p[l + (4/37)v~1]) and the
Bose gas of bound pairs (where the right-hand dashed line represents half of the binding
energy, g — —¢€,/2 = —h*/2ma% = —epv?). Since the vertex function I' contains the
bosonic degrees of freedom and is identified with the boson Greens function, we can
read off the effective mass 2m* of the bound pairs from ['(K,,). To do this we, take
zn = 1€), as discrete imaginary frequencies and define the related susceptibility x(K, z)
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V= 1/lkpag) . v=1/lka) 3

Fig. 5. ,Hrm real part of the effective bo- Fig. 6. The imaginary part of the effecti :
son mass 2m” versus the dimensionless cou-  boson mass 2m”* versus the &Embmmos—mmmn _<¢”,.
pling m.numnm; v. The full line represents our  pling strength v. The full line represent; e
numerical result. The left-hand dashed line  numerical result. The _mmn-rwzmv&mmrmmm _N_p:
Monnmmﬁonim nn.v the BCS theory. The right- corresponds to the BCS theory. The ne M;
M:& mwmra&. line represents the asymptotical  tive part near v ~ 1.3, which would E&amam
strong-coupling result. an instability of the system, is presumably a

namerical artifact. =y

for continuous frequencies z as an analytical continuation of (K, Q) in the u , er
ooEwa half plane (Im z > 0). The effective mass 2m* is moamwam:mm vw comparin _uwro
analytical structure of x(K, z) for K — 0 and z — 0 with the related function oﬁmmwOmm |
system. M.ﬂ turns out that this effective mass 2m* is complex and can be identified as
.arm mmwnﬁ:\m mass of a time dependent Ginzburg-Landau equation as in Ref. 11. Our
..m:w:odn& result for 7' = T, is shown in Figs. 5 and 6 as full lines. The _w?-rwrm m.mm_umm
lines correspond to the asymptotic result of the BCS theory. In the strong-coupling limit
v — +ow nearly all fermions are tightly bound into pairs which behave as bosons of:
Bmmm.wﬁ. = 2m (twice the fermion mass). As it is expected this limiting result is clearly
seen in Figs. 5 and 6. The leading correction is due to the repulsive interaction between :
nrm. vo.mo:m. We have found [1] the asymptotic result 2m* = 2m[1 + (3m)~lv 3+ :..r._,
which is real and represented as the right-hand dashed line in Fig. 5. o

The effective boson mass 2m* may have an imaginary part which is related to'a

damping mechanism and to the finite lifetime of the bosons, because the pairs can-

15—t n G g ety o o v o iy, e st
e : : into pairs, while single”
fermions are rare. Hence the imaginary part of the effective mass 2m* is nearly zero, as
1t 1s seen in Fig. 6 for v 2 +1. (The small negative imaginary part in Fig. 6 for no:vzw.m.m»
v between H..H and 1.7 is presumably due to a numerical artifact because it would lead”
to an unphysical instability.) For intermediate and weak couplings v < + 1 the system’is’
a ::xmc_.o nm bound pairs and free fermions because of fe2 —€p. H,Emzmaw:mm the rather’
large imaginary part of 2m* which is clearly seen in Fig. 6 for v<-+ 1. Finally, for-
weak couplings v < — 1 the real part becomes negligible compared to z_urm wammm:ma\wmﬂﬁ
because the bound pairs become rare and the fermionic properties become dominant:’*
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Fig. 7. The fermion occupation number Fig. 8. Double-logarithmic plot of the
n(k) for various coupling strengths v = —1,9, fermion occupation number n(k) versus k.
+1,4+2 at T = T.. While for weak coupling For large k the power law tails n(k) ~ Et
v = —1 the discontinuity of a Fermi surface at  caused by the bound fermion pairs are clearly
k = kg is indicated, n(k) is small compared to  seen as straight lines for all couplings v =
i and similar to a classical distribution func-  —1,90,+1,+2.

tion for strong coupling v = +2.

Until now we have discussed only the bosonic properties of the system which are
related to the vertex function I'. The fermionic properties are included in the fermion
Greens function G. Of special interest is the fermion occupation number defined by
nk) = -Gk, 7= —0). The result of our numerical calculations for T = T, is shown
in Fig. 7 for several couplings v = 1/krar. For weak couplings (here v = —1) a rather
sharp Fermi surface is seen at k =~ kp which is smeared out more and more for increasing
v. For strong couplings (here v = +1 and v = +2) the occupation number n(k) is small
compared to 1 and looks like a classical distribution function. While for an ideal Fermi
gas n(k) would decay to zero exponentially for large k, in the present case the bound
fermion pairs cause power law tails n(k) ~ k=% for k > kp which are clearly seen as
straight lines in the double logarithmic plot (Fig. 8) for all coupling strengths v. In the
strong coupling limit the power law tail has been obtained also analytically [1].

5. Conclusions and outlook

While in the limits of weak and strong coupling the mean-field approximation is good
and the BCS theory and the theory of the superfluid weakly interacting Bose gas can
be recovered, respectively, the numerical analysis has shown that the self-consistency is
essential in the crossover region. The self-consistent theory leads to qualitatively new
results compared to the previous theories. Since the interaction between the condensed
and noncondensed fermion pairs is included in the self-consistent theory, the super-
fluid transition temperature T.(v) is a monotonically growing function of the coupling
strength v without a maximum in the crossover region. The bound fermion pairs are
represented as a power law tail ~ k—* in the fermion occupation number n(k) for large
momenta k > kp. While for strong couplings v2 + 1 the system behaves like a weakly
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interacting Bose gas, in the intermediate and weak-coupling range v < + 1 the mmHEm,,o:
pairs are bosonic quasiparticles with a short lifetime expressed by the large mﬁwmmum@
part of the effective mass 2m*. "
Our numerical procedure is a powerful method for solving the seli-consistent equa-
tions, which is not restricted to the superfluid transition at T' = T, but can be applied
for arbitrary temperatures T'. For future investigations of special interest are thetmo-
dynamic quantities like the specific heat C,(7") and the compressibility &7(T') at givey
values of the dimensionless coupling strength v = 1/kpap. Furthermore the micro.
scopic functions G and T' can be used to derive the linearized hydrodynamic equations
and to determine transport coefficients like the thermal conductivity A(T") and the shear
viscosity 7(T). This must be done by an analytical continuation analogously as we have
shown above, because hydrodynamic equations represent a direct generalization of the
time dependent Ginzburg-Landau theory. The resulting physical quantities could then
be used for a comparison with experiments. o
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