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Foundations of a many-body theory for the edge behavior of soft x-ray spectra of
simple metals are reviewed. A way is shown how the one-electron absorption (emis-
sion) amplitude is generalized within a model of Mahan, Noziéres and De Domini-
cis to a many-body Kubo formula with field-theoretic Green functions. Two non-
perturbative methods of evaluation of a transient conduction electron — core hole
susceptibility in the asymptotic limit of long times are discussed and compared:
Nozieres and De Dominicis solution and a solution based on the Wiener-Hopf
method. It is argued that the exact solution undergoes a nonanalytic crossover
from a short-time (Fredholm) to a long-time (Wiener-Hopf) regime not fully traced
in the former method.

1. Introduction

It has been known for a long time that a jump of the distribution of conduction
electrons at the Fermi surface must be responsible for the edge anomalies in soft x-
ray absorption (emission) spectra of metals, XAS (XES). However, the actual role of
many-body effects due to the instantaneous generation of a core hole and the final-
state interaction for the threshold behavior of x-ray spectra had not been recognized
until 1967. Anderson [1] disclosed that non-interacting electrons when scattered from a
suddenly changed local potential relax to a final state orthogonal to the initial one. This
effect is now known as ”orthogonality catastrophe”. Mahan [2] was the first to show that
the final-state interaction due to the core-hole potential leads to logarithmic divergencies
in perturbation theory causing a power-law decay of x-ray spectra at the threshold. Only
after these theoretical predictions precise measurements using a synchrotron orbital
radiation (SOR) confirmed the edge singularities experimentally [3]. Nowadays a many-
body origin of the edge anomalies in soft x-ray spectra is widely accepted.
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The essence of the edge anomalies in x-ray spectra lies in peculiarities of the jy.
teraction of many itinerant electrons with a localized core hole. In pure metals it ig
sufficient to take into account only one core particle, since the absorption or emissiop
of a light quantum is a linear process described by the Fermi golden rule. To describe
the absorption of light we distinguish the initial and final states. We suppose that N
conduction electrons and a core electron are for ¢ < 0 in the ground state of an 5.5@.

Hamiltonian
H; = Muﬂnnw ap + E.b'b (1)
k

where we neglected the spin of the electrons being irrelevant for the essence of the =
v.aov_ma. The energy E. is the ionization energy of the core electron and €y is the
dispersion relation of the band electrons. After the absorption, ¢ > 0, the core electron -
is excited into the band and the dynamics of now (N + 1) conduction electrons is
governed by a new Hamiltonian with a core-hole potential ,

~ H
H;: = 1
f = Mw ekaf a ~ N > Vit ap - (2)
k k

In the case of emission H; and .MQ interchange their roles. Since there are N (~ 10%3)
conduction electrons and only one core electron, we could assume that the excitation of
the core particle does not alter the macroscopic ground state of the N band electrons.
We could apply quantum mechanical, time-dependent perturbation theory to evaluate

the transition amplitude for the absorption of light. The Fermi golden rule leads to
2n &wh\. 2 ; )
@)= 5 [ el 0P = nlag)6 + B —q) 0
where w is the frequency of the incoming light, n(¢) is the electron density and .

wi(k) = \ Pr¥; (r) € pdi(r)

is the dipole moment with ¥} (r) being the Bloch wave and ®;(r) the Wannier function -

of the localized core electron; € is the vo_mmmw&ou vector of the incoming light.

Formulas (2)-(3) have served as a basis for band calculations of x-ray spectra [4].
Possible singularities can arise in such a theory only due to singularities in gm@gmm@
of states, i.e. due to the distribution of the conduction electrons. The o:m-m_ooivm—
.nrmoQ cannot hence cope with qualitatively different threshold behavior for different
inner states such as K and I spectral lines in alkali metals. The individual core states
must contribute nonperturbatively to the process of absorption and emission of rmE
and the quantum mechanical description must be replaced by a many-body ﬁrmo_.%

In this paper we discuss the foundations of the simplest many-body theory for ‘the
edge anomalies in x-ray spectra due to Mahan, Noziéres and De Dominicis AEZUV.,E&
concentrate on two different nonperturbative ways to obtain an asymptotic solution at
the edge. The first one is a solution in the time representation due to Nogiéres and De:

Py
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Dominicis [5] and the second one is a solution in the frequency representation based
on the Wiener-Hopf method [6]. The assumptions and results of these solutions are
compared and discussed. We show that the latter approach has a broader range of ap-
plicability and enables to track down the crossover from short to long time asymptotics
and to put down general, mathematical criteria for the existence of the edge singularity
in the Green function of the core hole.

2. Many-body theory for x-ray spectra

It is inevitable to abandon the quantum mechanical, one-particle description to win
a more realistic picture of the physical mechanism of absorption and emission of light in
metals. We must treat the effects of the transient core hole nonperturbatively. The first
effect due to the excitation of a core electron is the instantaneous generation of a local
core-hole potential. It causes that the ground state of the conduction electrons evolves
in time towards a state orthogonal to the initial one (orthogonality catastrophe). A
time-dependent potential

~ 1
V = -6(t)exp{-nt} > Vi, % ®)
kk

where 7 is an infinitesimal damping factor, influences the time evolution of the initial
state and the new state at time t can be represented as (h = 1)

[N (2) >= §(¢,0)|FS(N) >= e~ teiflrt | FS(N) >=

T Te AL. \o “ &@3: IFS(N) >, 6)

where @%Qv is the potential in the interaction picture with the unperturbed Hamiltonian

H; and |[FS(N) > is a Fermi sea of N free electrons. The overlap amplitude between
the final and initial state is

An(t) =< Un(t)|FS(N) >=< FS(N)|S(t,—0)|FS(N) > . (7

In the long-time limit this overlap goes to zero, however, not exponentially as used to
be the case in decay processes of excited states in nuclear physics, but rather with some
power of ¢. For a contact potential (Vi = V') we obtain for N — oo [1],[7],[8]:

mm

= on2 ’

An{o0) ~CN™° , O 6 =Imln(l 4+ VG(in)) . (8)
(8) is an important result, since it tells us that the adiabatic theorem is not valid for
this problem. If the adiabatic theorem were valid, then |An{o0)| should approach 1 in

the thermodynamic limit. N N )
We have two distinct Hamiltonians H; and H; controlling the dynamics of the con-

" duction electrons for t < 0 and ¢ > 0, respectively. The problem we are facing now is
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to decide which Hamiltonian should be used in the actual calculations of the 5
tion and emission amplitudes. Although the electron dipole interaction wit} -
linear, i.e. perturbative, the creation of a transient electron-hole pair nonperturh
changes the evolution operator of the conduction electrons. The initial state isno'lsx
an eigenstate of the final Hamiltonian. To evaluate the absorption amplitude wait;
to generalize the golden rule so that the initial state is the ground state of ; ay
final states are eigenstates of H ¢- Then a many-body generalization of (3) is [9]

where < .- >p denotes thermal averaging with 8 = kgT and ~.>~>§<b . In the emission
- case we simply change the integration interval to (—00,0) and replace w+in with w —in.

3. Solution of the MND problem due to Noziéres and De Dominicis

The MND problem now consists in finding an explicit expression for the absorption
Nmbmmmo:v amplitude (13). Let us remind that the MND problem can be approached
without referring to the MND Hamiltonian (10). The spectral function I(w) is then
calculated directly from (11) using the state vectors of the conduction electrons (Slater

L determinants) and Hamiltonians H; and @% . Such approaches to the MND problem
where [¥;(N) >= b|FS(N) >, W = >k ASAEQW@ + c.c.) and Ey is an eigen f‘aﬂw’ " are reviewed in [9].
of the Hamiltonian m\ with an eigenstate |[¥;(N + 1) >. It is not evident how : . In our paper we oOHWS:nmwno oxo_c.m?m; on dozvm::}waﬁw methods for solving
the matrix elements in (9) related to many-body Green functions. Only linear _.om,vo: 3.5 .ZZU problem starfing s:.wr ﬁwv‘._: mm;_a:_m.n on the effective one-body schemes
theory and Kubo formula provide such an information. They are, however, not directly aiming at the exact esympfotic solution in the vicinity of the x-ray edge. It means
applicable here because of a nonperturbative, abrupt change in the dynamics of th either to evaluate a conduction electron-core hole susceptibility
electron system caused by the absorption (emission) of light. It was Noziéres and ¢
workers [10], [5] who proposed a new many-body Hamiltonian containing appropriately

?

oQ
I(w) = 2Re M\ dte™ (B =Femwt )| < W (N 4 1)|W|W;(N) > |2
f 0

Xk () =< T ?Sg_ﬂén&%g g (14)

H; and Hy, now called Mahan-Noziéres-De Dominicis (MND) Hamiltonian L oindk ) .. . ; : S
| e in the long-time limit, or to derive the asymptotics of I(w) in the limit |w — wp| — 0,
m,;\;:u = acal ap +Ebtb— = Vir.al ay,bbt . where wy is a threshold frequency.
WM %k %k N m\ kk%k %k A manageable way to reach the asymptotic solution proved to be the time repre-

sentation and the evaluation of XF_QQV in the long-time limit. Such an approach to
the MND problem was launched by Noziéres and De Dominicis (ND) [5]. A similar in
spirit, but different in the method of solution is the Wiener-Hopf trick introduced to
the MND problem in [7],[8],[6]. In this and the following sections we briefly analyze and
compare these two methods and their results.

The only hope to solve a many-body problem nonperturbatively is to transform
it to an effective one-body problem and to solve the resultant Dyson equations. ND
succeeded in the former step completely and in the latter one only conditionally. They
made use of an important observation that the dynamics of the core particles separates
from that of the conduction electrons. It is because of no energy transfer between the
local and mobile degrees of freedom in the many-body perturbation theory for the MND
Hamiltonian [12]. We can hence decouple the two Green functions of the conduction
and the core electrons contributing to the susceptibility y, i.e.

This Hamiltonian reduces to m/b if there is no core hole and to @x in states with a core
hole. The advantage of Hamiltonian (10) is that it allows to rewrite the absorption,
(emission) amplitude using the standard field-theoretic Green functions. Since the’
initial state may not eventually be the ground state of Hprnp, we generalize I(w) in’
(9) to finite temperatures as inghb

27 =
Ip(w) = & > e < W, W, > PS(E, ~ B —w)

n,m

where E,, are eigenenergies of MMEZG with eigenvectors [¥,, >. It is a standard Sm&;
derive from (11) a Kubo-like representation using field-theoretic Green functions ?:
1 A . = S
Ip(w) = 2R \ dt e+ Ty T-E::s %SES_ _
0
I t f
. s N o Xk (8) =< T[T (0)b(0)] 5 {< T |k ®)a 5_ >p} (15)
where W (t) = ¢"*HMnp We—1tHuno  There is no difference in the MND description b _ k “
.ﬁSao: the initial and final states as well as between the emission and absorption. Ther
is hence no abrupt change in the Hamiltonian and the adiabatic theorem and linear
response theory may be regained. Switching from the Heisenberg to the interaction
picture we obtain a final formula for the absorption amplitude o

Iy(w) = mmwmlpl w(k)w(k’)" \8 dte“+t < T T:&n_ﬂﬁvgwgvioi >6

However, we paid a price for this decoupling. We had to introduce a new symbol {...},
to the thermal averaging for the conduction electrons. This symbol says that we have to
use a nonequelibrium, transient Green function evaluated with a time-dependent Hamil-
tonian. It is the MND Hamiltonian (10), where the core-hole potential is acting only
on the time interval [0,7], i.e. Vi j — Vi g/ [0(t') — 0(t' — ¢)]. The core-hole Green
function in (15) consists of all closed loops of conduction electrons in the many-body
perturbation expansion to the susceptibility x. It represents a ”vacuum” amplitude

N
k k!
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m,.:m reflects a reaction of the conduction electrons to the transient core-hole poter '
tial V. It is nothing else than the amplitude A(t) for the orthogonality catastro wum .
The Sm.:mmm:e Green function of the band electrons in (15) then comprises noscmwnmw
”potential-scattering” contributions to x free of loops of conduction electrons. <If i
hence effectively a one-body Green function of noninteracting electrons scattered by :
deep hole. However, this function must be evaluated out of equilibrium where :mmﬂwmw
momentum nor energy is conserved. The only many-body effect’in the Green functiog
of the condution electrons due to a core particle is therr the dynamical cutoff {-}ix

Hnw evaluate the susceptibility x) |.,(¢) now means to construct and solve Uwhmon
equations for the core-hole and the transient, conduction electron Green functions sep. -
arately. Since the Green function of a core hole is a sum of all closed loops, it can W.
represented as an exponential , ;

G"(t) = i < T [b1(1)b(0)] >= e | (16)

where QQV. is a sum of connected closed _oow.m. To derive a Dyson equation for a
.oo:mmvozm:wm Green function, we must open one internal propagator by cutting a line
in C(t). It can be done by a variation with respect to the interaction strength. The
resultant Dyson equation for a contact potential has a form [5],[6]:"

t v
Lt 1)) = Gt — tg) — »\ dt'G(ty — )Ty (t', a5 0) (1)
0
where at T' = 0, G(t) = N-!'3, G(t,k) = N? Yk(2m)7! [dwe ™t x [w — €k

. -1 . ; .
—insgnw] " is the diagonal (local) element of the Green function of the conduction

&onio:m“»mmwsmim:dm&mnmmcamgnaoz?mE_Sv.Hrmm:znao:QvamnroaoQ:w
structed from I, as

t v 7
C(t) H::.moﬁvl\a &\\ dAT (1", ; N) . Gwv
0 .

The Dyson equation for the nonequilibrium Green function of the conduction elec:
trons has a structure analogous to (17). We use a representation R

i1

=8

l.T T TFQETQ vmw HQQ%E_TSL\\ON HGt—t', Ko, 0;k) , a&

where the function I',(¢y,,;k) fulfills an equation

-
ferd}

t
HJNTWH 5 Nww mﬂv = QA&H = qu Wvl<\ &N\QANH — ﬂ\vHJnQ\V &mw —nv . AMOV
6 o

Equations (17) and (20) are the desired Dyson equations to be solved. The kernel of
these integral equations is the diagonal element of the Green function of :oi:ﬁanmommm
.oo:a:oaos electrons and is explicitly known contrary to other many-body EoEmEmmﬁ ;
is due to a separation of the dynamics of the conduction and the core electrons in the -
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MND problem. The only evidence of many-body effects here are the closed loops in the
core-hole Green function and the transient form of the band-electron propagator.

ND succeeded only partly in solving Dyson equations (17) and (20). There is no
substantial problem in solving these equations on finite intervals, i.e. ¢ < oco. These
equations are Fredholm integral equations whenever the local propagator G(t) is a
bounded function [13]. A solution can be obtained using Fredholm determinants (e.g.
by time discretization). There are no singularities in the solution for finite times, at
Jeast at weak coupling where perturbation theory applies. Problems arise only if we
want to approach the long-time limit ¢ — co.Then the Hilbert-Schmidt norm of the
integral kernel

2 ! 2 ¢ ! ' ni2
1G1B= [ dudialGles —to)f =3 [ ariGw)
diverges at least linearly with ¢. Egs. (17) and (20) are then no longer of Fredholm
type. There is no simple tool to solve these equations in the long-time limit. Note that
the long-time limit is troublesome at any temperature, although the edge singularity is
expected to exist only at zero temperature.

ND concentrated only on the case T = 0, where the existence of the edge singularity
is known from perturbation theory to be a consequence of a jump of ImG(w) at the
Fermi level. From this fact they correctly deduced that only the long-time asymptotics
of G(t) matters. They proposed an asymptotic transformation of an infinite interval
so that the integral b” dt’|G(t')| develops the same logarithmic singularity on a fixed,
finite interval. They replaced the actual integral kernel G(t) on an infinite interval by
an asymptotic expression

GA(t) = —ivg TW + \;S_ (21)

acting on a finite interval. There vg is the DOS at the Fermi energy and A is a global
weight for the short-time contribution to G(t). Integral equations (17) and (20) with the
asymptotic kernel G%(t) become singular and are exactly solvable using the Riemann-
Hilbert boundary problem [13]. A solution for I'; matching the noninteracting case
{(V — 0) then is

| m\s.
Ty(t1,12; ) = G*(t1 — 12) ﬁia ) (22)

where § = I'm _=C+>Q:T.3v is the phase shift due to the core-hole potential at the Fermi

energy. Analogously for the function [';(f1,%2;k), where only we have do decompose
the Green function into partial waves. From solution (22) we then obtain the full
asymptotics of the core-hole Green function

| < T [b1(0)b(0)] > | ~ ¢~ 241 (23)
and of the nonequilibrium Green function of the conduction electrons

{<T T_qsgfi vr |~ to1+20/T (24)
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with & being the phase shift of the I—th partial wave due to the potential V. The
resultant asymptotics of the susceptibility xi{(t) then is .

S

Aw

) ) W/ 7= (A +1)6 /2 :
R o )

with Aw = |w — wy|. This is the famous ND result for the threshold behavior of soft
X-ray spectra. It is important to note that the critical exponent in (25) when expanded'

in the interaction strength V' coincides with the result of perturbation theory in leading -

order.

ix

4. Solution of the MND problem with the Wiener-Hopf method

The ND solution can be accepted from the mathematical point of view only con
ditionally, since it is based on an asymptotic representation (21). This representation;
though intuitively reasonable, has no rigorous foundation. It is supported by physical
arguments and by other approaches [9] confirming the result (25). There is, however’
no proof that (25) is exact. A natural question arises if there is another approach
avoiding the asymptotic transformation (21) and producing the exact long-time mmwinu
totics of the susceptibility XX ¥ (t) directly. An answer to this question offers a method
of Wiener and Hopf developed in the thirties by solving classical radiation processes
[14]. 1t appears that the MND problem is another physical situation where the elegant
method of Wiener and Hopf finds application [6]. :

If we put the upper limit of integration in (17) ¢ = 0o we obtain

i

ﬂaﬁ?slvn@?rsvl \/\ &d?l&wsqim;v. @3
Q

T

This is a Wiener-Hopf integral equation supposed the integral kernel G(#) is a square
integrable function on the interval (—oo, oo) [15]. If this is the case we can find an exact

solution to (26) without further assumptions or restrictions on the long-time asymptotics *
of the function G(¢). Since G(t) € La(~00,00), it must, however, be bounded in the ,

long-time limit as

1

t — o0 G| <Ct™® | a>- . - (@0

2

No singularity of G(t) at finite times is assumed.

To solve (26) with the Wiener-Hopf trick we apply a Fourier transform on Awm.v.u
both time variables ,,.

W,ooAET&mYS = 27é(w; — ENVWAEHV - »@AELW+AETEMW A) . Ammv ‘

where I'y (¢1,¢2; ) = 0(t1) Too(21,£2; A) is a projection of T', onto the positive half-axis :
i.e. Ty € LT := L4(0,00) in the first variable. To resolve (28) we use the following tWo

(25)'
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properties [15]: a) Ly(—00,00) = L3 eLY = bwAloouov.@hon, o0}, b)if f,g € LE(L3)
then (f * g)(t) = [dt'f(t —t')g(t') € LI(Ly); and a Wiener-Hopf representation
1

~ Fw ® mﬁ.!lllaia Gz + insgnz
Hiﬂsvnm',M@lw “ mi&n&imﬁ\éTaf.::_:iﬂ +insg Wwv

where EE are analytic functions on upper (lower) complex half Emummw” ie. Uo_osm.mo
hw. We are now in a position to separate (orthogonal) functions from L3 and to obtain

an explicit form for Ty (wr,wa; A):

1 G(wz — insgnws)  Et(ws)
(wy —w1 — i) 1+ y@AEN ~ insgnwy) Et(w1)

W.LETENW A) = (30)

(30) is an exact solution to (28). To complete the solution for the Green m.::oaon of
the core electrons we insert (30) into (18) and obtain an integral representation for the

exponent
v ® Judw' 1 — i@ G(w' —igsgnw'’)  Et(w')

QQV = Qon = &\c &v,‘\woo 472 (w—w' + s.dvm 1+ ymAE\ _ s.d.wsz\v .@+AEV Aw:
The integral in (31) diverges linearly with ¢ — oo. We hence have to use a nmmc_mmmmwﬁou.
The best way to do it is to solve (26) in leading order of 1/t for _wnmo but mEam. time
intervals (0, ). The leading contribution to the solution is again mno,\.iom by the Wiener-
Hopf method as will be discussed in the next section. On a w:_.;m interval we are able
to control the divergent terms when limiting ¢ — oo and obtain the following regular

expression [6]

v oa ©  gwnG(w |§u.m:.8v 1, [* dw
QQV =i QGQV =2 nﬂ\o = ;\Moo dw + -P w2 N.*.AEV )

2mi 1+ AG(w —ingsgnw) T Jooo
. (32)
where I; (w) = 0(w) [I(w) — I(07)] + 8(—w) [I(w) — I(07)] and
I(w) = w \ e
E*(w') G(w' — insgnw'’) i Et(w+w') @AW+ w' — insgn(w + w'))
& Et(w+w) 1+ AG(w' — insgnw’) Et(W) 14 MG(w+w' ~insgn(w + E\Nwwv

Formulas (31)-(33) are valid asymptotically for £ — oo @.ﬁ any temperature mzm for .55‘
trary function G(t) € La(—00,00). The second integral in (32) Uma.ogom _omw:nra_om:%
divergent at T = 0 and can be evaluated explicitly. The asymptotic expression for C(t)
then is

. _c z &1 N_v a&
QQVHI: A@a + M\IB &E~§53+<Q%E:+ wi& :m_
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with a regularization factor £. From (34) we can obtain the long-time wm%EEoSom o
the core-hole Green function at T" = 0:

| < T [b(2)b(0)] > | ~ ¢~ Za(HF 10 /2n?

The critical exponent is then 1/2 of the ND result (23).

An analogous Wiener-Hopf integral equation to (20) can be constructed also for ﬁr
transient Green function of the conduction electrons. It i is, however, not so easy to ¢ Qn-
tract from it the dominant asymptotic behavior of the function AA T T_QQVQ BL L
at long times. The result seems to be sensitive to an inevitable finite-time Bmc_m:umm

tion. A deeper analysis is necessary to obtain the definite long-time asymptotics of 25 :
full susceptibility Xk k (t) within the Wiener-Hopf method. ,

5. Discussion

After the asymptotic result of Noziéres and De Dominicis for the threshold vmvaoH :
of x-ray spectra had been confirmed by other approaches, the MND problem seemed to
be solved and understood completely. However, the solution based on the <<5=2.-mowm ;
method erodes our certainty about the rigorous long-time asymptotics of the relevant ,
Green functions. A few questions arise from comparison of the ND result with that ?oB v
the Wiener-Hopf method. Which is the exact edge exponent? What are the necessary ‘
and sufficient conditions for the existence of the edge singularity? What is mogm:w
going on at long but finite times? .

To answer these questions we must compare the assumptions of the two wm%EvnoSo
methods. The Wiener-Hopf solution is strictly exact only at ¢ = co. This alone is in-
sufficient for the dominant asymptotics at long times. To obtain the exact asymptotic -
solution at long times, it is necessary to solve (17) on large but finite time intervals
[0,¢]. The Wiener-Hopf method is not; however, applicable on finite intervals. To use
the Fourier representation we have to extend the functions from the interval [~t,t) .ﬁml- ,
odically onto (—00,00). The spaces LE(—t,t) are not closed with respect to oo=<o_:9o_u
for such periodic functions. E.g. for f, g € L = L3[0,t) we have .

(F*g)(tr) = [1, dt' f{ts —t')g(t") = 0(t,) [ dt’ f(t1 — t')g(t)

H

(36)°

FO(—ty) [T A f(E— t)g(t + L+ 1)

and the convolution does not vanish for negative times t;. Property (36) 50_38 one .
of the necessary conditions, (b), for the application of the Wiener-Hopf trick. ma;m_‘
however, important that the second term in (36) is proportional to Af(t) + mnﬁv in
the asymptotic limit £ — co. Since the functions f and g are square Eammmmv_o ‘they
must fall off at long times according to (27). We can expand around the moESo: a
t = oo with a small parameter proportional to t~* and the Wiener-Hopf solution ¢an
be applied and remains valid in leading order of t=' also on large, finite intervals. Th
critical exponent at the edge singularity (35) calculated within the Wiener-Hopf Boarom
must be exact! The reason why the ND solution misses the exact exponent by a mmoao

Theory of soft x-ray spectra: Nonequilibrium dynamics of many electrons 401

of 2 is the following. The asymptotic substitution (21) for the actual local propagator of
the conduction electrons G(t) can be understood as a ”compactification” of an infinite
interval. Thereby the infrared divergency due to the length of the integration interval
is transformed to an ultraviolet divergency of the new asymptotic propagator acting on
a finite interval. Long-time distances are transformed to short distances (around the
interval edges) and vice versa. There is only one singular region at long times ({ — oo)
in the original equation with no singularity at the lower edge ({ = 0). However, in the
ND solution both the interval limits of the transformed equation are singular. Each end
of the interval contributes to the edge exponent with the Wiener-Hopf result, hence the
difference by a factor of 2. The only possible interpretation of the ND result is that,
because of the symmetric treatment of the interval ends, the asymptotic transformation
(21) corresponds to a compactification of the full infinite interval (—o0,00) . The ND
transformation is inappropriate for half-infinite intervals with asymmetric end points
such as (0, 00).

The Wiener-Hopf method also proves more useful to decide under which circum-
stances the edge singularity arises. The ND approach can only be used if the local
propagator of the conduction electrons has the long-time asymptotics t~!. This need not
always be the case [16]. Within the Wiener-Hopf method we are able to put down pre-
cise mathematical conditions for the existence of the edge singularity. The Wiener-Hopf
technique is applicable to square integrable integral kernels G(t) (G € La(—00,00)). If
there is no singularity at finite times then L;{—o00,00) C Ly(—00,00). The edge sin-
gularity appears if and only if G € Ly(—00,00) NG ¢ L1(—00,00). Since only the
long-time asymptotics matters, the edge singularity exists for the propagators G(t)
with the following asymptotics

t—o00 , Gt)~t"" |, WAQM~ . (37)
The form of the singularity remains the same, i.e. (34). However for the asymptotics
other than the usual one, i.e. o = 1, the phase shift is either saturated (6 = 7/2) or
has effectively infinite interaction strength.

The solution of the MND problem on a finite but large time interval has two different
regimes. The first one is perturbative regime governed by a Fredholm solution and the
other one is a nonperturbative regime where the Wiener-Hopf method is applicable. The
Fredholm method of solving integral equations [13] is applicable in situations where the
Neumann perturbation series in the integral kernel converges. This imposes a bound
onto the interaction strength V and the integral kernel G(f). The latter must be a
Hilbert-Schmidt operator fulfilling an inequality

i 14 M i i
i\ %\ &M_E:LMV_NHEM\ d G = VHIGIE, <1 . (38)
4] 0 —1

It essentially tells us that (V/w)?wt < C, where w is the band width of the conduction
electrons and C is a dimensionless constant. In this regime perturbation theory and
the ND asymptotics are appropriate. However, if we approach the real long-time limit,
then (V/w)?wt > 1, perturbation expansion in the interaction strength breaks down.
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A crossover to the Wiener-Hopf nonperturbative solution must occur. This crossover
Is present at any temperature independently of the edge singularity. It is an intrinsic
feature of the Wiener-Hopf solution that expanding in the interaction strength and then
taking the limit { — oo does not commute with taking the long-time limit first and then
expanding in the interaction strength [?]. :

In summary, we discussed foundations of a many-body theory for the edge behavior
of soft x-ray spectra of metals. We reviewed the way how the one-electron, golden-rule
absorption (emission) amplitude can be extended within the MND model to a many-
body Kubo formula using field-theoretic Green functions. We then concentrated on
two effective one-body formulations of the MND problem producing a nonperturba-
tive asymtotic solution of the transient conduction electron-core hole susceptibility at
long times. The former method due to Noziéres and De Dominicis, using an intuitive
asymptotic transformation, was shown to lead to a different long-time limit fromthe
mathematically exact solution based on the Wiener-Hopf method. Not only misses
the ND solution the critical edge exponent by a factor of 2, it also seems to be less-
versatile in applications than the latter approach. Particularly at finite temperatures
and in situations with more intricate long-time asymptotics of the local propagator of
the conduction electrons. The presented analysis and comparison of the two solutions
showed that the way in which a transient excitation in the MND model approaches
equilibrium is a delicate, nontrivial process explicitly demonstrating breakdown of per-
turbation theory and the existence of a nonanalytic crossover from a short-time to a
long-time regime. Ignoring this fact may lead to an incorrect continuation of short-time
(perturbative) results to the long-time critical region.
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