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In this paper energy transport in a harmonically disordered chain with a regular ar-
ray of quartic n.n. springs is studied. Depending on the choice of the excitation we
have found two archetypes of solitary solutions (self localized soliton,ultra-debye-
frequency and hypersonic kink-solitons) which respectively display constructive or
destructive interplay with Anderson localization. Under certain circumstances we
observe the generation of longliving subsonic solitons, which allude to the possi-
bility of practically unhindered energy transport in disordered structures.

1. Introduction

This work is stimulated by the current debate about the role anharmonicity plays for
the transport properties of nonconducting disordered materials. The discussion started
with the discovery of universal anomalies in the heat conductivity of silica glasses and
other materials found by Zeller and Pohl [10]. Their measurements show a T%-law, a
plateau and a further increase of the heat conductivity above the plateau region. This
latter increase motivated the idea of a constructive role played by anharmonicity. On
the other side numerical simulations of Allen and Peldmann [1] seem to indicate that
no anharmonicity is needed to explain this increase.

Disorder and anharmonicity are the two dominant mechanisms of phonon scattering
in solids. Thus on the one hand they were both supposed to reduce thermal conductivity.
Especially in the fundamental paper of Peierls [5] it has been proven that in an ordered
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M.Mm.l cu. U%ipwm_ ,T. = 0) P-excitation at Fig. 2. Initial (r = 0) Q-excitation at .
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mga\ﬂ = 50, (a) ideal harmonic chain (v« = stant r = 50, (a) ideal harmonic chain (ve =
o, f'/f = 1) (b) ideal anharmonic chain 0, f'/f = 1) (b) ideal anharmonic orw.mM
A.x.H 1, f'/f = 1) (<) disturbed harmonic (v« =1, f'/f = 1) (c) disturbed harmonic
chain (v =0, f .\\ =05, ¢=10.2) (d) dis- chain (re=0, f//f =05, ¢ = 0.2) (d) dis-
szmvmmlwurwizoz_n chain (v¢ = 1, f'/f = turbed anharmonic chain (v¢ = 1, f//f =
0.5, ¢ = 0.2) The dashed perpendicular lines 0.5, ¢ = 0.2). v

mark the sound velocity edges of the undis-

turbed chain.

anharmonic mn:m thermal resistance may exist due to Umklapp-processes. On the other
hand m_nmm&\ in the famous paper of Fermi, Pasta and Ulam it has been demonstrated
that an excited one dimensional anharmonic System (Fermi-Pasta-Ulam or&.:v does not
merge into thermal equilibrium [3]. Later it has been verified that hypersonic solitons

exist in anharmonic chains. In particular that has been shown analytically by Toda -

{7} for an .mwﬁo:mni.ﬁ potential (Toda potential) and numerically for a fourth-order
anharmonicity (Fermi-Pasta-Ulam chain) by Zavt et.al. [4]. "ol

2. System

H.,o. analyze the interplay between disorder (Anderson localization [2]) and anhar- ;
B.OEQQ we macav.\ two different classical initial excitations of a one-dimensional chain .
with n.n. harmonic and quartic interaction. Introducing dimensionless coordinates Qs

the equation of motion for this system then reads:

d?
J7adm(r) = G ®mmt1(Qmpr — @m) + o1 (Qre1 — Q)

+J\A :@:.l.u - inu -+ AQSIu - inm_w AHV
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where pm = My /M, and @, = fo(m, m’)/f are normalized masses and force con-
stants respectively. M and f denote the Mass and the harmonic force constant of
the undisturbed chain. 7 = Qpt = 2,/f/Mt is a normalized time. The parameter
~4. characterizes the strength of the anharmonicity. An estimation of the value of v,
in real systems has been given in an earlier work [4]. Disorder is introduced for the
harmonic part in the form of a second spring constant f’ assuming to be present with
concentration ¢ and distributed at random.

To gain information about transport properties of the system, we consider the spatial
evolution of the dimensionless local energy per site m, h,, which is defined as:

\NS = Wts AM%%FV& + Wﬁ93~3+uﬁ®3+u - @«:vw + OL:.SIHAQEIH - ©3vm
+W.§ _H©5+H, - .QEVA + AQBIH - in»_w va

The equation of motion has been solved with different numerical methods (fourth-
order-predictor-corrector method, Runge-Kutta) in a self expanding manner.

3. Conflicting interplay
The first excitation we study (denoted as P-excitation) is of the form:
Pr(0) = ém 0; Qm(0)=0 (3)

In Figs. 1.a-d the energy distribution h,,(7) at the same instant is presented. For the
ideal harmonic chain (Fig. 1a) one gets a plateau region near the center which is limited
by sharp peaks at the sound velocity edges (vsng7). The analytical form of this evolution
is discussed in more detail elsewhere [8]. If anharmonicity is introduced an additional
peak beyond the sound velocity edges appears. The hypersonic peaks are solitons of
kink-type, as can be seen in the Q,, representation (Fig. 3a). In the continuum limit,
which corresponds to a spatially extended soliton, an analytical solution has been given
by Wadati [9]. If, by contrast, disorder is introduced in the harmonic chain, we observe
that the distribution of the energy splits in two components (Fig. 1c): propagating
wings at the effective sound velocity edges Aemmm < ¥snq) and a non-propagating central
part (Anderson localization [2]). Globally, energy propagation is diminished against
that of Fig. la. If disorder and anharmonicity are combined (Fig. 1d) we observe
a reduction of Anderson localization and a destabilization of the kink solitons which,
however, may survive for a long time. ,

In total the sequence of Figs. 1 demonstrates the conflicting interplay of Ander-
son localization and solitary energy transport. With respect to energy propagation
we realize the phenomenon that indeed anharmonicity may favour energy transport.
Additional details are discussed in the paper of Zavt et.al. [4].
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Fig. 4. Spatiotemporal evolution of the site energy Am(7) in the ordered anharmonic chain
(v« =10, f'/f =1). Initial (r = 0) Q-excitation at m = 0. ’

, : Introducing spring-disorder in the harmonic chain (Fig. 2b) we find a much larger
it Anderson localization than in the corresponding P case (Fig. 1c)

. Finally again combining disorder and anharmonicity we notice a strong enhancement
of the central localized energy portion which demonstrates the constructive interplay
between Anderson localization and solitary selflocalization.

Fig. 3.  Solitons in the ideal anharmonic chain (v, = 1, F'If =1) . (a) Kink Barte
A%-mxxn;ﬁ_ou.v.a The mozzm. velocity edge m = v,pqr is marked by perpendicular lines. W.mwaw
:m._. rm.:aoan space oscillations below this edge. (b) Oscillating self localized soliton AQ.
excitation) (vy =1, f'/f = 1). e

£ 5. Unexpected propagation paths

(From the foregoing sections we have learned that neither of the two archetypical
excitations seems to allow for a free ballistic transport of energy in the disturbed anhar-
monic chain. But by further increasing the value of v4 our computer simulation hints
at the possibility of ballistic transport pathways.

In Fig. 4 again a Q-excitation in an ordered anharmonic FPU-chain is shown in its
space-time development. After some time the energy packet splits up in three stable
selflocalized solitons, where the central one is of odd-parity [6] whereas the other two
are of even parity. If spring disorder is turned on, already a rather small amount of it
suffices to prevent the splitting in three peaks (Fig. 5). But in addition to this effect
a much more interesting phenomenon with respect to energy transport is observed. As
noted, a pulse like longliving excitation moving with subsonic velocity separates from
the selflocalized part in the central region.

Now, it could be argued that in the considered example the anharmonicity parameter
7Ya is unrealistically high. But the same situation can be realized by a smaller v, value, if

4. Enhanced localization

y muv this section we consider an alternate archetype of initial excitation (”@) - excita-
1on” =

Qm(0) = bpo;  Pr(0) =0 @

In Figs .wmlm the energy distribution hm(r) at the same given instant is presented.
For the &wm_ harmonic chain ( Fig. 2a) we observe that more energy remains in thé
central region as compared to P-excitation ( Fig. 1a), whereas near the sound velocity
edge the wings play a less pronounced rolé. This has been discussed @:m;amomzwdw
Vazquez-Marquez et al [8].

o In Em ordered anharmonic chain (Fig. 2b) we note the upgrow of a strong selflocal-
ized oscillating soliton at site m = (see also (Fig. 3b). This selflocalized mode is of -
the type considered in the group of Sievers [6]. Jm
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Fig. 5. Spatiotemporal evolution of the site energy hm(r) in the disordered anharmonic chain
{1+ =10, c=0s5, f'/f = 0.95). Initial (7 = 0) Q-excitation at m = 0.

the measure of the initial excitation @m(0) is appropriately increased. Thus, the ballistic
packet of Fig. 5 may appear also in systems without excessively high w:rmuﬁoio;&
Although the localized energy in the central region may be non-realistically high, the
moving soliton carries much less energy, and since it is found to be an individual object
apart from the central one, it can be considered just as a possible solution of the
equation of motion irrespective of the generation process. In particular it is conceivable
to generate it directly by a suitably chosen initial excitation. .
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