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We discuss the relevance of solitons for the present understanding of antiferro-
magnetic spin chains. For anisotropic § = 1 chains, the energies connected with
soliton propagation and binding are shown to determine the quantum phase tran-
sitions of these models, in particular the Néel-Haldane transition. Restriction to
the soliton subspace allows a formulation of the Haldane ground state, which in
its simplest form is of molecular field type and which can be improved upon by
including correlations.

1. Introduction

The investigation of elementary excitations in magnetic chain systems has been a
topic of intense experimental and theoretical research for many years. In addition to
wavelike excitations (or magnons), localized excitations have been postulated theoreti-
cally and verified experimentally in great detail in the last twenty years. These localized
excitations have become to be characterized as solitons; actually, from a physical point
of view, magnetic solitons are more commomly (and often more appropriately) known
under the name of domain walls. Most of this theoretical work was based on a classical
treatment of spin dynamics, aiming in particular at an understanding of experiments
in TMMC (S = wv and in CsNiF3 [1]. In recent years, however, interest in the gen-
uine quantum analog of classical magnetic solitons has grown in parallel with general
progress in the theoretical understanding of one-dimensional quantum spin systems.
The purpose of this contribution is to describe the role of quantum solitons in spin

chains with § = W and S = 1 defined by the hamiltonian

H = [(S5Shyn+S4Shpy) +eSi52,,)+d 3 (S)? (1)

uvited lecture at MECO (Middle European CoOperation) 19, Smolenice, Slovakia, April 11-15,
1994
2e-mail address: mikeska@itp.uni-hannover.de

0323-0465/94 (© Institute of Physics, SAS, Bratislava, Slovakia 377



378 H.-J. Mikeska

>:won shortly :.wimém:m the present understanding of the role of solitons for the S=1
mo_mo.:vmnm. antiferromagnetic chain (xxz chain, for § = 3 the parameter d is muwm_m,\%;w
Sw will Emi_% focuson S =1 Heisenberg antiferromagnetic chains. These have 8875%
widespread interest since Haldane’s conjecture [2] that they behave essentially different

— H - . = i . -
from S = 5 chains: >=S$Eo§wm=ogo S = 1 Heisenberg chains are conjectured to be

characterized by an energy gap and exponentially decaying correlations (instead of g

_EME spectrum m.Em algebraicly decaying correlations for S = 3). This conjecture has
so far not been rigorously proven but very convincing evidence exists from theoretica)
ity

numerical and experimenta] investigations (for a review see (3]) that a Haldane phase’

with the conjectured properties exists.
In this noi:v:aoz. we will describe results showing that also for the Haldane phe-
nomenon quantum solitons are the essential degrees of freedom to be considered, in
4

agreement with the original approach of Haldane [2]. We only give the essence of the-.

M:Wm.m_o& arguments and some results of the calculations and refer to ref. [4] for more
etails.

2. § = w chains

.<<o mﬁm; by m?wsm a short survey of the present understanding of elementary exci-
.amioc.m in the S = 3 xyz-chain. In principle, all information of interest for this problem
is m<m:mEm from the exact solution via the Bethe ansata. In early interpretations of the
Emoidmﬁ_o.n extracted from the Bethe ansatz equations low-lying excited states were
m.mmn:v.mm in close analogy with classical spin-wave excitations, all the more since the
dispersion law for the § = 1 isotropic Heisenberg antiferromagnet

w(g) = dr]sin g ®

differs from the classical dispersion law only by a factor of $7. It was not before 1981
that Faddeev and Takhtajan [5] pointed out that experimentally accessible excitations
mnfmm:% are composed from two basic particles, each with the dispersion law of eq. (2.1).
A given wave vector ¢ can be realized by various combinations of wave vectors of the
two Ums._:.iom and a two particle excitation continuum results. The basic particles are
properly interpreted as quantum solitons. The existence of this two-particle 835::9

rggggq .vmmb mxvmlaosemzv\élmmmvwm:&@man:m:ﬁgs momialzmoxwmiamnnm
on the material KCuF, [6]. .

From a physical point of view, this picture can be understood, when we start from

the Ising limit of the xxz-model, i.e. € — oo in eq. (1.1).
Then we have as ground states the two degenerate Néel states and.the conventional

way to Ei.n.acmo excited states is to apply S¥(S;,) raising (lowering) one spin to create -
m._Oo& excitation with energy e. There is, however, the possibility.of an excitation :
with energy Wm“ by turning around all spins after a given site n. The first mechanism -
Eowwm two bonds and develops into a spin wave when one goes away from the Ising
limit whereas the second mechanism breaks one bond and is nothing but a domain wall. -

M o i . . . . -
t is obvious that a spin wave excitation can be considered as composed of two domain

wall excitations and this is what Faddeev and Takhtajan [5) have shown to be true not..
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only in the Ising limit but generally, including the isotropic limit. For small transverse
interactions this can be verified by simple perturbation theory and easily shown to be
in agreement with the exact Bethe ansatz results. Thus the formally complete results
from the Bethe ansatz and the physical picture provided by the perturbation approach
have combined to give the final interpretation of the dynamics of the S = w chain in
terms of solitons.

The simplest realization of this picture is actually in the anisotropic xy model, where
the Bethe ansatz solution reduces to a solution in terms of free fermions [7]. Here the
elementary excitations can be explicitly described by soliton creation and annihilation
operators which are fermions [8].

3. S = 1 chains

We start our description of the Haldane condensation in antiferromagnetic S=1
chains by describing its essential features in physical terms, starting from the Ising limit.
This discussion shows in principle, why solitons are relevant for this phenomenon; it
also reveals differences and similarities to the case of § = w chains. The ground state
in the Ising limit is the doubly degenerate Néel ground state; the lowest excited states
lose the binding energy of two bonds and come in three types, which all have energy 2¢

above the ground state:

(i) when a a spin raising or lowering operator S* at site n is applied to the ground
state, we obtain spin deviation states which after linear combination of all sites

become spin wave states.

(ii) when we turn around all spins to the right of some site n, either directly or with
one site with S? = 0 in between, we obtain soliton states. Obviously, two adjacent
solitons are identical to two adjacent spin deviations, both are created from the
ground state applying the operator S} S, ;. The energy of such a corfiguration
with two adjacent zeros is 3¢ and therefore lower than the total energy of two
separated solitons (AE = 4¢) and we conclude that there exists a binding energy
for soliton excitations.

When we move away from the Ising limit, the essential point to be discussed is the
influence of the transverse interaction

.m:.n:ue = WMAM‘M\. MM.TH + MM%“+HV

n

Hiransy connects states obtained by raising resp. lowering spin projections at adjacent
sites with respect to an initial state. It is easily seen that Hy,ans, directly connects
soliton states of the first type (one intermediate site with S2 = 0) at adjacent sites,
whereas spin deviation states at adjacent sites and solitons of the second type are
separated by an energy barrier. This means that the transverse interaction will be
more effective in lowering the energy by delocalization for soliton states than for spin
deviation, resp. spin wave states. Thus we conclude that these soliton states will be the
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BOm.n ::woﬂﬁm:ﬁ o:mmmgm: ::manmgzmmum&nrmvarm&o:nOmarm m:amm:oawmcmam
chain upon its approach to the isotropic limit. G
The importance of the soliton states of the first type has first been realized in the

smvm_m of Qoga.m-wm:;Om [9], who called this soliton-type nonlocal excitation above thé ‘
Néel state a spin zero defect (SZD). The basic characteristic of such a state, in contrait

to the other low energy excitations is comprehensively described by the statement thaj
antiferromagnetic order appears to continue across the site(s) with S% = 0. Staté

otherwise, if we cross out all zeros, states with only soliton excitations will have perfect
Néel order on the remaining sites. This type of order has become to be called hidden
order or string order. wqn

In the real spin chain an odd number of solitons destroys long range mzs.mmwaogmm.

netic order. Thus the following picture of the ground state of the antiferromagnetic’
chain develops when the strength of the transverse interaction ¢ is gradually decreased
from co: Quantum fluctuations mix preferably SZD’s or soliton excitations into the
ground state. For large values of ¢ these will be bound due to the binding energy dis- .
cussed above and long range antiferromagnetic order will persist. For sufficiently small -

values of ¢ the energy gain from the mobility of a single soliton (lowering in energy
due to delocalization over the whole chain) due to the transverse interaction will rm
large enough to overcome the binding energy - then soliton pairs dissociate and gm;m%mw
tem undergoes a phase transition to a phase characterized by a ground state without
long range antiferromagnetic order, the Haldane phase. For S = 1 this dissociation of
solitons occurs in the anisotropic region, for a value of € = ¢, > 1. .
A quantitative treatment of the quantum phase diagram in the S = 1 antiferroma-
gentic chain makes extensive use of the concept of hidden order. Hidden order has been
first W.sewoacomm by den Nijs and Rommelse [10] in the context of surface roughening
transitions. A quantitative measure of this hidden order is introduced by defining the
operator of the so called string order parameter [113:

n—1 :
T = exp(in M S5) Sn - 3)
p=1 % (s

The antiferromagnetic order in the Néel phase and the hidden order in the mmeMw ;.

phase, which we have discussed above, are related to the z-component of nEmh “ovmww..
tor. The most important quantity to characterize the Haldane phase, however, is the
transverse component 7% and the corresponding string correlation functions.

Hidden order also becomes apparent in the model of Affleck et al (AKLT) [12] for an
antiferromagnetic S = 1 chain. This chain has an exactly solvable ground state, which
possesses all characteristics of the ground state of a Haldane phase. The Hamiltonian
of this model is s

H= Muw.:w.;t -~ E.w.:.w.:tvw

1

with = —3, ie. it has biquadratic exchange in addition to the standard Heisenberg

model. The exact ground state for this Hamiltonian has been given explicitly by .PNHH
as valence bond state. This ground state has only components with perfect hidden
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order and has been shown to have a finite correlation length, € = 1/In3 and a gap in
the excitation spectrum. To make the hidden order more transparent a nonlocal unitary
transformation has been introduced by Kennedy and Tasaki [13], which transforms a
state with perfect hidden order into a ferromagnetic state.

When this unitary tranformation is applied to the AKLT ground state, a factorized
state results. In an alternative formulation this state is formulated as a matrix product
[14], which avoids to introduce the unitary tranformation. A factorized state is the
basic characteristic of a molecular field approximation and we interpret the result for
the AKLT model saying that in this limit a molecular field formulation of the Haldane
ground state exists. The existence of this representation is obscured by the fact that it
does not become apparent before the nonlocal unitary is applied, on the other hand it
can be used as starting point to formulate a molecular field approach to the Néel and
Haldane phases also for realistic hamiltonians such as given in eq. (1.1). This has first
been done by Kennedy and Tasaki {13] and discussed in some more detail by the author
[4]. Here we only give a short list of the results:

(i) The phase diagram of the antiferromagnetic S = 1 chain with single site and
exchange anisotropy is obtained in a qualitatively satisfying way, exhibiting the
Néel-, Haldane- and large-D phases. Quantitative agreement with numerical re-
sults is not expected and is actually rather poor.

(ii) Spin correlations can be calculated and are found to exhibit Néel order in the Néel
phase and exponential decay in the Haldane phase. For d = ¢ the longitudinal
correlation length vanishes, which indicates a switching of the correlation function
from antiferromagentic to ferromagnetic behaviour.

(iii) The behaviour of the string correlation functions allows to characterize uniquely
the different phases. In particular the Haldane phase is characterized by the fact
that only in this phase the transverse string correlation function is nonvanish-
ing. Appropriate expectation values of the string operators allow to define order
parameters in the usual sense. In the Haldane phase both the longitudinal and
the transverse component can take two equivalent values; this broken symmetry
corresponds to four equivalent ground states in this phase. Close to the phase
boundaries the string operator averages are characterized by a square root be-
haviour as is characteristic for a molecular field type approach.

(iv) Wavefunctions of excited states can be easily written down as domain walls medi-
ating between the different equivalent groundstates. Linear combination of these
domain wall states as required by translational invariance leads to states which in
the limit of the AKLT model can be identified with the states discussed by Knabe
[15] and Arovas et al [16]. In this molecular field type approach these excited
states can be discussed in the whole phase diagram: Entering the Haldane phase
from the Néel phase the lowest excited state is at k = 7; when the strength of the
single ion anisotropy is increased, the minimum of the excitation energy shifts to
k = 0 [17]. This behaviour, predicted by this approach, has not been investigated
in real or computer experiments so far.
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(v) pmo%oﬁsnw:m.?rmamgsoz of the conjecture that the low-lying excited states ar. £
main wall character just described can be obtai i s

. . : ; tained using numerical
ods: For the isotropic antiferromagnetic $ = 1 chain with up to 18 spins SMz% o
ave

calculated energies and wavefunctions of low-lying excited states [18]. ;From th
. the

wav i W 1 f
wm.ﬂﬂnn~0ﬁm e find as numerical result that the Maﬁmﬂm correlation mCEOanE. 0,
~lor

th . :
e lowest excited state changes sign when the distance along the chain is varieq

This is in complete agreement with the analytical result [17] :

N_NS\ ”Q» 'M’§ 5 ¢
(T () = a*(1 - 21 for  Sj,, =1 e

T = QM _ ‘.Nlﬁ 2 ) Ead
(T™(n)) =247 H%(1 Zv for S7, = v SV

followi i :
ollowing from assuming the domain wall character for this state as described above and

th . . .
:ﬁm“ﬂoﬁw Mﬂnw mmm_::vfo:.. Analogous results are obtained for higher excited states
cred ,mmoo:% e %o vwamrm,mmum once more that these domain walls should be consid-
order” solitons: They are constructed to describe a localized transition

VOHS@@E two € 1 \% _—
qui N.—mﬁﬁ mﬂoczm mnw.ﬁm i 1 i
w m. — m . S W —Or nrmsmm— ves TWCO MOTHOE OTN\HWOROH m ﬁrﬂ

Th . 5
o mmm Wmmmmwm%mwnmoam:mMS Mm the approach described so far is that spins at different
uncorrelated after the unitary transformati i
Sites : . / ation has been applied. Ther
wmao J.Em.mvﬁnomnrom.ér_nr go beyond this factorization but keep the Ur%mmnmﬂw Boﬁ?mamm
striction to take into account spin zero defect states only: ,

(i) The general .mnmnm with longitudinal string order, i.e. the state which has onl
MMHMOWMM% %rnvo m:vm.vmnm of m.?: zero defect states, can be mapped toa § = .w
ot mm_m W amm.:_rum rwﬂ:;oimz. is that of an xyz chain in an aﬁmnu%_
et . Its eigenstates can be mrmn:mmmm exactly for some combinations of

parameters. The resulting picture is in qualitative agreement with that

obtained from the molecular field
¢ . . e
Details can be found in oof iy ype approach and improves on it @:&R»Sﬁg

(ii) In mw:@.m:Nwio: Om.ﬁ_o uncorrelated wave function of the simplest approach we ,
MMM E&w:mm noﬁm_wn_wum over a finite number of sites in a cluster mwvaoxmawmom
) vmﬁnz M__MM m@ <m:m§o=m_ calculation as wmm been done by Mikeska and Verrucchi
&mm.BB Srmowm oozm_m.;._ocm of three neighbouring sites, this leads to a Urwmm
e 1s surprisingly close to the one obtained by numerical methods..In
e s .m@wﬁm.nr allows a.o follow the dissociation of bound solitons as th

ndamental instability mechanism for the formation of the Haldane phase. -

4. Conclusions

mm:M’”wMMMNM_MWWMmMm mrm 8@-2@58 of mm_;o:m »,on. the present understanding of anti-"
¢ soltons opog wﬂw. mwn the S = 3 xxz-chain the basic elementary excitations
coliton (dos » two solitons ooE.v::w to form a magnon. In S = 1 chains the

main wall with respect to antiferromagnetic order) is the relevant excitation
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owing to its high mobility as compared to the spin deviations. In the Néel phase soli-
tons are bound and the phase transition to the Haldane phase is determined by the
dissociation of these soliton pairs. A qualitatively correct and technically simple treat-
ment is obtained restricting oneself to the subspace which has only excited states of the
soliton type. These states have in common the appearance of (hidden) string order,
the nonvanishing of transverse string order is the unique characteristic of the Haldane
phase. After applying the nonlocal unitary tranformation of Kennedy and Tasaki [13]
the simplest approximation to the Haldane ground state is a factorizing state. We have
discussed how to obtain improved results by using an effective S5 = w model and by
taking into account correlations in a cluster expansion. The elemantary excitations in

the Haldane phase are described as domain walls in the string order.
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