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We examine the influence of frustration on the ground-state of the mvmh-w Ji-
J2 Heisenberg antiferromagnet on the square lattice using exact diagonalization,
variational wave functions as well as spin-wave approach. The data indicate the
breakdown of the conventional collinear antiferromagnetism at a critical value of
homogeneous frustration J5™ x 0.4.J,. This conclusion is obtained from (i) the
analysis of the ground-state wave function, (ii) the spin-spin correlation functions,
and (iii) the inspection of low-lying levels. The breakdown of the Néel order is
followed by a quantum spin liquid state with enhanced exotic correlations (spin-
Peietls, chiral). The analysis of the ground-state wave function of the Néel phase
indicates that the Marshall-Peierls sign rule (derived for unfrustrated bipartite
lattices) survives till about Jo = 0.4J;. In the strongly frustrated region the
wave function significantly deviates from a simple Jastrow type state. In general,
we find that both the self-consistent spin-wave calculations and the variational
calculations tend to underestimate role of frustration in respect to the breakdown
of the Néel ordering.

1. Introduction

The subject of quantum antiferromagnetism in low-dimensional systems has at-
tracted a great interest in recent time [1] in connection with the magnetic properties of
the cuprate high-temperature superconductors. However, the low-dimensional quantum
spin systems are of interest in their own right as an example of a strongly interacting
quantum many-body system. Though we know from the Mermin-Wagner theorem [2]
that at any finite temperature the thermal fluctuations are strong enough to destroy
Magnetic long-range order, the role of quantum fluctuations is less understood. One
Specific area of research is the square-lattice spin 1/2 Heisenberg antiferromagnet with
frustration. Tt is well-established now that for a system with nearest-neighbour in-
teraction the ground-state is long-range ordered. But going back to Anderson’s and
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Fazekas’ _:<m.m3mw:o=m [3, 4] of the triangular lattice there is the conjecture that quan
tum a:n.h:m..ro:m plus frustration may be sufficient to destroy the long-range order m,
two %H.bmzw:ozm. Hence the situation on the square lattice may be changed &mmﬂom__s
by taking into account frustrating next-nearest neighbour interaction. In nozzmoaow

with slightly doped
iy ghtly doped cuprate superconductors the so-called J 1 — J2 model on the square
N

N
H=J MU (sisiys + SiSitg) + J2 M (8iSita4g + 8iSi_s.44) (1)

i=1 i=1

was Eoco%&. to simulate doping by frustrating diagonal bonds [5]. The parametet
J2/J1 determines the frustration within the spin system. In the classical spin limit

of the J; — J, model there are two regions of conventional antiferromagnetic long- :

range order : For J2/J1 < 0.5 the ordinary Néel two-sublattice antiferromagnet is

ﬁr.m ground state of the system, whereas for Jo/J; > 0.5 a collinear antiferromagnet
with four sublattices is realized. Precisely at Jo = J1/2 one finds a high degree of
degeneracy of different states. For the extreme quantum case one could expect that
the n:m.z_uca fluctuations are able to open a window of a spin liquid phase without
conventional antiferromagnetic long-range order for a finite parameter region around
JafJy ~ o.m which separates the two antiferromagnetic phases for small and large J.

However, different theoretical approaches yield controversial results. The linear m@mm..
wave @mog [6, 7], extensive exact diagonalization studies [8, 9,10, 11, 12 13], 1/N
expansion techniques [14], bond operator techniques [15], effective ..Meoams m‘vvaoworam
[16] predict a destruction of the classical Néel order in a finite region around Jof Ty~
o..wu .A\crmﬁoww modified spin-wave theories, taking into account spin-wave interactions
within a Hartree-Fock scheme, do not find this intermediate phase between the Néel

antiferromagnet and the four-sublattice state [17, 18, 19, 20, 21]. The aim of the present -

paper is to discuss several indications for the existence of the quantum spin liquid in a
region around J,/J; ~ (.5.

2. Outline of the methods

. For the .&mocmmmo: of the J; — J model we use three methods, the exact diagonaliza-
tion mum lattices up to N = 96 sites, Takahashi’s spin wave theory and variational wave
functions of Jastrow type. 2
(i) Exact &mmo:w:g&osu To construct the ground state [¢) we can expand it to @.sw
MﬁEEmﬁo set |n) in the spin space [¥) =, cnln) . Usually [n) is chosen to be a

irect product of eigen states of s;, (Ising states), which form an orthonormal complete
set. .Hrm ‘oommmommzam ¢n are directly computed by a numerical diagonalization of the
Hamiltonian matrix (n|H|m) (Lanczos algorithm, for an illustration see [22, 9]). m,muom

the size of the matrix increases exponentially with N this method is restricted to small -

systems.

(ii) Variational wave function of Jastrow type: For larger systems the coefficients a:
can be calculated approximately. The coefficients Cn are represented as functions of cer-

tain parameters P, ,, containing characteristic features of the basis states [n) [23], i.e.

e = (=1)" f({P; .}), where n counts the number of up spins in a sublattice, say A.

Jud
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The expression for the phase factor (—1)?= is taken from the Marshall-Peierls sign rule
[24, 25, 26]. For a Jastrow type wave function the standard ansatz is the exponential
one [27, 28, 29, 23] ¢, ~ (=1)tnef1Prngl2Pon . The f, are variational parameters
to minimize the energy of the variational state. The classification parameters P; , count
the number of "false spin couples” of the basis state |n) within a given separation shell
s. To a certain shell s belong all pairs of sites i and j with fixed separation |R;;| = a;.
A 7false spin couple” in a state [n) is a couple of spins I and m with a relative spin ori-
entation opposite to that one in the Néel state, i.e. (n|S?SZ |n) = —~{Néel|S; Sz, |Néel).
(iii) Spin wave theory: For low-dimensional systems Takahashi’s modified spin-wave
theory [30, 18, 21] is suitable. In this theory the conventional spin-wave technique is
supplemented with a condition for zero sublattice magnetization, in this way fulfilling,
by hand, Mermin-Wagner’s theorem [2] at finite temperatures, or the same requirement
for finite lattices. Formally, this is achieved through the Lagrange multiplier & which
has to be involved in the Hamiltonian, eqn. (1). The main elements of the theory are:
1) some bosonization scheme (say, Dyson-Maleev), 2) a Hartree-Fock decoupling of the
quartic terms of the Hamiltonian, 3) an appropriate Bogoliubov transformation diag-
onalizing the resulting Hamiltonian. For the two-sublattice Néel state this procedure
leads to the following equations (see, e.g. [18, 21])

) 1 ' 1
(si55) = F(Rij) — 6" (Rij) — 78(Rs;) , ['(Riy) = f(Rij) + 36(Rs5) ,  (2)
where ‘

1 kR.. - 1

fRij) = (atag) = 5 3 Ro@—m™ — Ssry) )
k

% 1 : . o

9(Ryy) = ~(@fbf) = = D e FRopg 127 “)
k
= Tk = (s b k = cosk, cosk

M = H+tlhe~m\5v~\ﬁlﬂwv v Tk IMAoOm + +cosky) , Ik = coskgcosky, . (5)

The Bose operators @;, b; come from the Dyson-Maleev transformation and live on A
and B sublattices, respectively. The prime over sums means that k vectors run in
the small Brillouin zone, and 0(R.;) is the Kronecker function. The renormalization
factor U in eqn.(5), renormalizing J;/J1, is a result of a Hartree-Fock decoupling. U is
determined by the short-ranged correlators f, g:

U=flg , F=f&x+y) , g=9&)=g9@F) . (6)
The relevant fields f, g, and g can be obtained from the equations
1 —1/2
L= 53 =a)™" (7)
|3
1 2\—1/2
=% m\dnsrﬁ = M) : (8)
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1 _
[= N m\ﬂxﬁ - 7. 2 9

Eqn.(7) is a direct result of Takahashi’s condition for zero sublattice magnetization

relevant for finite lattices. Finally, we add the expression for the ground-state energy
per site H

E/N = —2J,9% + 27,2 (10)

>:o.~:m..$<o_3 the theory of Hirsch and Tang [31] does not take into account the renor-
malization, i.e. U = 1. In thijs particular case the Lagrange multiplier 4 is determined
by eqn.(7) only, and then J and g can directly be calculated from eqns.(8,9).

Now, let us explicitely write down the ground-state wave function connected with

nrm g.mo.% mwmanrommvoé.mcﬁmaamoﬁ the two-boson parameterization adopted above
the spin-wave ansatz reads , N

Ysw ~ exp AMU\SW mmww_nv |Néel) . CJ
k #

Here |Néel) is the classical Néel state. The weight factors wi are defined by wy =
v /Uy , v and up being the well-known Bogoliubov coeflicients -

2 _ —-1/2
2o = (L-n)™"% =1 : up = (- 241 . (19)
Mw H.Sﬁ:m: way to generalize the spin-wave ansatz, eqn.(11), is produced by the substi-
ution
2ot — — Y wRy)sts (13)
k o7
€A

where the pairing function w(R;;) is defined by
2
EAHN.G.V = m. M\S—n €Os —mw\:. 4 AH%V
» .

Hrm,\moﬁonwim: m@:m.ﬁwbbnozsmonmm;mmwuoa&mamao:n sublattices. In this way, v%
use of eqn.(13), we come to the following spin ansatz

Ps ~ exp Al M SAWQV&_..&%V |Néel) . Cmv

57

It m.m easy to see .ﬁrma the wave functions, eqns.(11,15), coincide on the physical subspace:
It is natural to introduce also the symmetrized variant of eqn.(15)

P o exp AJ_M.Ui?:Tw&. +575t]) A_z%:viz&mvv : a&

<<w .:o:no %.mm this state is another representation of a Jastrow state, however, the
pairing function w(R;;) comes from the spin wave theory and there are no individual

What are the indications for a quantum spin liquid. . . 369
~0.4 -
E /
16 sites /
© —-0.514
5 3
‘0 ]
s ;
(] ]
Q0.6 4
> ]
mJ ]
o :
w -0.7 3 eeeea exact
3 ssmrss SWT, renormalized
] — — SWT, standard
] eswas Jastrow, s=1,2
'O.m PRI LTI T O IT PRCFTTTT SRR R RS e REsan Y|
0.0 0.2 0.4 0.6 0.8 1.0

J2/ 4y

Fig.1. Ground-state energy versus J/Jy for N = 16 calculated by exact diagonalization, by
standard spin-wave theory without renormalization (ie. U = 1, Hirsch-Tang theory), by spin-
wave theory with renormalization (U # 1, Hartree-Fock decoupling of quartic terms) and by
variational Jastrow-wave function with two parameters P; ., ?m@nmm?:&mwvo:ﬂ shell) and P, ,,
(mext-nearest-neighbour shell)
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Fig. 2. The weight >, ¢% of basis states |n) fulfilling the Marshall-Peierls sign rule (i.e. the
sum runs over states with sign(cn) = (—1)" only) for square lattices of N — 16, 20, 24,26
sites.

variational parameters f, for the different shells of paired spins. The factor U, arising
from the Hartree-Fock decoupling, can be either taken form eqns. (7,8,9) or, more
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Fig. 3. Overlap of various variational Jastrow functions with different classification parameters
P 5 and of the spin ansatz, eqn. (16), with the exact ground state for N — 16. For the spin”

ansatz (16) the parameters U/ and # were not taken from eqns. (7,8,9) but are varied to get
the best energy.

appropriate, can be used as a free variational parameter in the wave function (16).

3. Results

A. Energy

First we present the energy in dependence on the frustration parameter J,/J; for a
lattice of N = 16 (Fig.1). The maximum of the energy indicates the region of strongest
frustration and coincides according to the Hellmann-Feynman theorem [32] with the
point where the next-nearest neighbour correlation Amﬂ.mﬂ.wmn@v vanishes. It can be shown-
that the critical ratio J, /J1 where the antiferromagnetic long-range order breaks down
(for the order parameter see eqn. (17)) is left from the maximum of the energy [33).
We find the maximum of the exact energy at J/J1 = 0.56. It is evident that both the
spin-wave theory and the Jastrow wave function describe the energy for low frustration
very well but fail in the most interesting region of strong frustration.

B. Ground state wave function i

In the limit of Jy, = 0 the model fulfills Lieb’s and gwiwm;mﬂ criterion for valﬁm@

lattices and consequently the Marshall-Peierls phase rule (24, 25, 26] sign(c,) = (1)
(see section (2)) is fulfilled. Including the frustrating Jy the lattice is no more bipartite
and the rule may be violated. Recently, we have argued [26] that the rule may sur-
vive even for large frustration. We present in Fig.2 some results for the exact ground
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Fig. 4. Pair correlation function {si8;) scaled by its value for J, = 0 for nearest-neighbour
(nn}), next-nearest-neighbour (rnn) and largest separation for the given finite lattice. The
solid lines represent the exact results for N — 24 (average over both possible configurations
N = 4x6 and N = 6x4), the short-dashed line the results of the Hartree-Fock spin wave theory
for N = 64 and the long-dashed line the results for the variational Jastrow state with two
parameters (shells s = 1,2).

state wave function for square lattices of N = 16, 20, 24, 26 sites with periodical bound-
ary conditions. It is evident that the Marshall-Peierls phase rule gives an excellent
description of the phase relationship till J,/J; ~ 0.4. Just above this value starts a
rearrangement of the phases indicating a significant change in the ground state. The
difference between N = 16 and N = 24 on the one hand and N = 20 and N = 26 on the
other hand is connected with the different symmetries of these lattices for finite Ja (see
8, 13, 34]). Next we consider in Fig.3 the overlap between several variational Jastrow
states including the spin ansatgz (16) and the exact wave function for N = 16. We find
that these wave functions work quite well for small frustration even for a short-range
pairing. For strong frustration J2/J1 > 0.4 the quality of the description is worse and
the long-range pairing becomes more important.

C. Pair correlation

The antiferromagnetic order parameter for finite systems is the square of sublattice
magnetization (8, 13]

1 N L
M= g L D ay) (17)

Obviously, this order parameter is based on the pair correlation function {sis;) multi-
plied by a staggered factor. For small systems the short-range correlations contribute
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the average over both possible configurations N = 4x6 and N = 6x4 Py

i3

SIS

substanti 2
mrowawwﬁmwv\o to \W\NT whereas for large systems the prefactor N~2 in (17) cancels the
ge correlators and only the long-range correlations are important. Hence we

di | .
scuss the influence of the frustration on (sis;) for different separations R;;. In Fig:4 :
RY

W , .
?MMSMM% _U<rm numerical exact data for N = 24 and the Hartree-Fock spin-wave results
’ » variational U) as well as the results for a variational Jastrow state with
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Fig. 7. Mean square deviation A2 of the low-lying eigen values of (1) from the levels of the
effective model (22) scaled by the corresponding valie A% of the linear chain for N = 16 and

N = 24 (exact diagonalization results).

two parameters (shells s = 1,2), both for N = 64. It is evident that the frustration
supresses the long-range correlations much more than the short-range correlations. In
particular, for the exact solution (N = 24) the correlation function for the largest sep-
aration (Rs; = (2,3)) goes to zero for J»/J1 < 0.5. In principle, the same tendency is
obtained from the spin-wave approach, however, the latter seems to underestimate the

role of frustration.
Furthermore, let us define a measure of total correlation

N
c=Y lfsis)l (18)

ii=1

i#3
which sums the absolute values of all pair correlators. We present the exact diagonal-
ization results for total correlation scaled by its value for the unfrustrated system in
Fig.5 for N = 16 and N = 24. For smali and for large J, the correlation is strong
and conventional antiferromagnetic long-range order (two sublattices for small J; and
four sublattices for large Jo, cf. {8, 11, 13]) is realized. The region with weak total
correlations is around the point of maximum energy Jo/Ji ~ 0.56 indicating the lack
of collinaer long-range order in this area.

D. Exotic correlations

Instead of the conventional collinear magnetic ordering more exotic noncollinear
order parameters may be relevant in the region of strong frustration J, = 0.5J;. Most
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?<o=3m nmz%mmmmm are the spin-Peierls (or dimer) order parameter D [8, 35, 11, 1
and the vector-chiral order parameter 7 [36, 11, 13]. The first one is mmm:mm m.mv 19

2
1 :
D=2 N M.UAIC:EEI, ;

where i, is given by the lattice vector R; =

hwise arrangement of spin dimers (singlet states of two spins). The vector-chira,
parameter 7 measures the long-range phase coherence of the handiness o
plaquettes and is given by

111

A g L
3l5% MU (Zijiveits+g ~ Zijisorgivg)

I

N&; = wAms. X8;+8; X8 +8 x wﬂ,v

Both parameters are presented in Fig.6 for N = 16 and N = 94 (exact diagonalization
&w.ﬁ@v. The maxima of both parameters coincide with the maximum in the energ:
(Fig.1) and the miminum of the total pair correlation (Fig.5). Of course, it wmiwmww
:zo_mwﬂ whether these data for small systems really indicate the mxmmnmamm of exotic
long-range order in the thermodynamic limit (cf. [13])

E. Inspection of low-lying levels C

W@nmczm% Bernu et al. [37] and Azaria et al. [38] suggested to investigate the wﬂmm,mm.

nmm:ﬂ o ﬁvm._osrw_%_:m levels belonging to different quantum numbers S of the square of

the total spin S2. These levels should be described by an effective Hamiltonian of the
K

form ;

" aiot
. Hegy = Bo+ 158% (@)
in o&ma. ?.u realize a symmetry broken antiferromagnetic Néel state in the thermody-
namic limit. We calculated the mean square deviation A? between the lowest levels
with S = 0,1,2,3 and the corresponding levels of the effective model (22) in depen-
dence on J,/J; for N = 16 and N = 24. The results for A? are drawn in Fig.7, where
we have scaled A2 by the respective value of the linear chain (the same number o,m sités)
with nearest-neighbour exchange. For the linear chain it is well-known (Bethe-Hulthen
solution) that the quantum fluctuations are strong enough to destroy the _ocmémum.w
wamw. >w mx.vmgmm“ the deviation A2 for the square lattice is less than that o:%won
linear chain (i.e. >m\>wO,A, 1) for small and large J, but in the mﬁo:m-?:mgﬁou«w»mw

2 . .
MW%@@ A%/ALc > 1, which is another indication for the breakdown of conventional

4. Summary

y F_ g_m.vmwma We present a number of arguments for the breakdown of the conven
tonal collinear antiferromagnetic long-range order in the ground state of the. Ji =z
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model on the square lattice at critical frustration J§™'/J) ~ 0.4. These are based on
the investigation of the energy, the ground-state wave function, the spin correlation and
the arrangement of the low-lying levels by means of exact diagonalization, spin-wave
theory and variational Monte-Carlo calculations. The arguments are summarized as
follows: (i) The spin-wave theory and the variational wave functions work very well in
the region of small frustration where the ground state is long-range ordered but fail in
the strong frustration area, which indicates a serious change in the ground state towards
a new quality not well described by these theories. (ii) For J, > 0.4J; the phase rela-
tionship of the ground state is not precisely described by that one for bipartite lattice.
(iti) The frustration particularly supresses the long-distance spin-spin correlation. The
short-range correlators are less influenced. (iv) The total strength of pair correlation
shows well-pronounced minimum in the region of strong frustration. (v) There are in-
dications of enhanced exotic correlations in this region which are not compatible with
collinear antiferromagnetic long-range order. (vi) The arrangement of low-lying levels
belonging to different quantum numbers of the square of total spin changes significantly
at Jo = 0.4J; whichs signals of a lack of antiferromagnetic symmetry breaking for strong
frustration in the thermodynamic limit. '
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