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The renormalization scheme recently proposed by White is applied to the d =
1 anisotropic XY model in a transverse field (AXY). A flow diagram, critical
exponents and energies have been calculated. It is found that this scheme is
a distinct improvement over the standard technique as far as the computation of
the ground state is concerned. The accuracy increases rapidly, when we keep more
states in each renormalization step, but the errors in the ground state energy are
always the largest in the neighborhood of the phase transitions. Comparing with
the Ising model in a transverse field, on account of more complicated symmetries,
the AXY demands more precautions during constructing a renormalization group
transformation.

1. Introduction.

The determination of the nature of the ground state and its energy is a central point
of quantum many body problems and few methods exist which can work with strongly
Interacting systems. One of the techniques is the truncation method, introduced by
Drell et al. [1] for lattice systems and used by many authors to study spin and fermionic
systems[2, 3, 4, 5].

The truncation method is a block-spin method, which makes use of the ground state
properties of the systems at T = 0, where the low-lying states are the most important.
In a standard approach the lattice is divided into blocks inside which the Hamiltonian
Is exactly diagonalized. By selecting a number of low-lying eigenstates of the block
and projecting the full Hamiltonian on these eigenstates a renormalized Hamiltonian
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is constructed for the blocks as new units. The interactions between adjacent blockg
are also reconstructed. By repeating the operation the ground state is formed ip a
hierarchical way and its energy calculated iteratively by accumulating the energies of
the blocks. B

For the Ising model in a transverse field (ITF) and the XY model in a transverse -
field (XYTF)[2, 3, 4] the positions of the phase transition, the critical indices and the
behavior of the correlation functions were calculated in satisfactory agreement with the
exact results (for d = 1). Unfortunately, if the accuracy of the energy was considered.
the situation was definitely poorer. What is more, Igl6i[6] has recently argued that arm .
success for the ITF is accidental and that in general the truncation method mixes bulk -
and surface properties in an unacceptable way.

Therefore a series of recent papers by White[7], where he criticizes the standard -
technique and proposes a new scheme, has aroused a significant interest. He argues
that for the standard truncation method the neglect of all connections to neighboring
blocks during the diagonalization of the block Hamiltonian introduces such large errors
that they cannot be corrected by any reasonable number of states kept. White’s idea -
is to embed the block in a surrounding. Suppose that |¢) is a complete set of states
of a block and [7) are the states of the rest of the lattice. In practice, we will usually
be restricted to the ground state of some finite section of the lattice, the so-called
superblock. Then we can write l1ho) = 2 i %iili)lj). The density matrix[8] is defined

as:
Pmn = Mﬂlbilu@:.w A:
j

As White has argued, the eigenvectors of p,,, with the largest eigenvalues are the
optimal states to be kept in the truncation method. /
White has shown that for the Heisenberg spin chain his method gives amazingly .
accurate results for the energy. We have decided to test White’s proposal for the
anisotropic XY model in a transverse field (AXY) [9, 10], which shows continuous
phase transitions and it is a credible probe in situations with large fluctuations. -

2. The two-level case.

In one dimension the AXY has been introduced by Lieb ef. al [11] (h = 0) and by
Katsura[12]. They considered a chain of N spins governed by the Hamiltonian:

1 1
= S [Jut s+ da-msrs] cays,

where the operators S¢,SY and S7 are spin-1/2 operators represented by Pauli matrices
and v is a parameter nrmnwgmli:m the degree of anisotropy of the interactions in'the :
XY-plane. The v = 1 case corresponds to the ITF, while the v = 0 case gives the
XYTF.

The v # 0 case belongs to the universality class y = 1 (the ITF) for any ratio z =
h/J. Therefore for a weak field the system behaves as the doubly degenerate Ising-like =

N
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HQ 1 0.5 0
0 -1 ~0.770982 | —0.636620
0.1 —1.002502 | -0.773836 | —0.639806
0.2 —1.010025 | —0.782422 | —0.649395
0.3 —1.022630 | —0.796819 | —0.665489
0.5 —1.063544 | —0.843657 | —0.717996
0.7 —1.126829 | —0.916481 | —0.800181
0.9 —1.216001 | —1.020211 | —0.919077
1 —1.273240 | —1.088110 -1
1.1 —1.342864 | —1.172393 —-1.1
1.2 —1.419619 | —1.262806 —-1.2
1.3 —1.500823 | —1.355913 —-1.3
15 —1.671926 | —1.546324 —-15 Table 1. The exact ground state ener-
2 —2.127089 | —2.033024 =2 gies per site for the AXY.

ground state. Furthermore for a strong field the system reduces to a set of noninteracting
sites, which leads to a singlet ground state. This shows that the AXY (v # 0) should
exhibit a critical line for finite values zc(7). For the XYTF (7 = 0) the end point of the
critical line is connected with a phase transition between a singlet ground state (a strong
magnetic field region) and a low magnetic field phase without long-range order. For the
value v = 0 the system has an additional line of a phase transition for 0 < z < amﬁ\
connected with a rapid change of the Hamiltonian symmetry from an Ising-like behavior
to an XY-like one.
The formula for ground state free energy has the form(11, 12, 13]:

0= EoJNT = - [ a ACk), (3)

27 J_,

where A(k) = /\Aa +cosk)? 4+ y2sin? k. The exact ground state energies per site are
collected in Table 1. for the AXY with 7 = 1,0.5 and 0, respectively. For the ITF
Pfeuty has found that the phase transition appears for z! = 1. For the XYTF Austen
et. al.[15] have proved that ¢ XY = 1.

In order to construct the effective states in a proper way, we have taken the symmetry
of the Hamiltonian under careful consideration. The eigenvectors S7 = |57)®...®|Siy)
withi =1,...,2"¥ which span the Hilbert space of the Hamiltonian, can be represented
by the eigenvalues of the S, (p=1,...,N), as |e1, .. ., €iN), where €;, = +1 or with

the symbols | and |. One can observe that the AXY Hamiltonian acting on a basis

vector does not change its parity: mmmzﬁ.@\nw m%V HHE.:Emmsmarmaarmm:vm:

space of the AXY for 0 < y < 1 is the direct sum of two invariant subspaces (even and
odd). For v = 0 (the XYTF) both subspaces undergo an additional splitting according
to the value of the total z spin projection: S* = MWHH €ip- In constructing the effective
states we ought to conserve these symmetries.

Let us first consider the case where we keep two states. For a 2-site block the
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fixed point | 3sa 34
1 1.155 | 1.360
XY 0943 ] 1

Table 2. The values of the critical points for different blocks and superblocks.

effective states in the two new “
ve subspaces should be written as a lin inati ;
the original states belonging to the adequate subspaces: =0 it om.

(M =111 +er|1]),

7

)y =110+ 11, (4)
wh i i i o
armo_mﬂ vmwn“% nognme.m:n depending on v and z. Since the original states building :v
i e are equivalent through particle exchange, their contributions are equal. !

or a §-site block the new states are obtained in a similar way: e

[ _33+S_2:+S:2v+9::r
) = ZZV+SZZV+S_Z:+SZZV.

i

M.NMM”WMMNM_W %v_om”q QWSm can see in Emﬂ:m 1, when the starting Hamiltonian lies on the
the RG: ?m:mmou:s ma.m ective Hamiltonian mﬁm%m always on this line. For the 2-site block'’
Hamiltonian lep2on produces an effective magnetic field (' # 0) and the offective
fixedl pofnt {v = M axis, although at the end it reaches the same zero-field Hmmnw
that for the \m-ml;m g ov.Wm tor il Gesite case (for more details see (10]). It shows
E—r _:vommmm with 0 < <1 the new states have been built incorrectly.,
St 305l B Emmxm ,_em are mogma.u in order to conserve parity, to combine an original
down [ [{). As a MM:_M:BVQ of sites up |11) é;.v one with a maximal number of sites:
axder mm. €.g., the m.w@ :mcmmowa:m:os for the 2-site case is not invariant
gn reversal of the magnetic field. It is worth noticing that this does not depend

MMMMNNMVM:M:H”,SMMM@H% _A.owa for the AXY only odd blocks give a proper result. The ow@

3site Zo%mommm m@ region [9]. For this reason, we have presented results only for a.r.m_

o an ot es. Gn.m at the zero-field XY fixed point (y =0,z = 0) the ground state
Jodd superblock is a doublet, we have used here the even superblocks with fotir -

the exact results, which we have

MM ”m;& wowsa a m:.:m value of z.(y), where the system under

o MMMM»ME Mrﬂ axis o.s (for 0 < z < zXY) we start to observe a behavior which' h
: ed by Jullien et ql. [4]. Because the RG transformation is not able to find

a whole line of phase transiti
. = transitions, we reveal only the XY fixed point -
XY fixed point. In an intermediate ilioninn g sero o
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Fig. 1. Flow diagram of the AXY

position to another and usually it finally ends up in the infinite fixed point. Sometimes
we can observe some cyclic fixed points. As we can see in Table 2. the suggestion by
White makes the I fixed point value worse than for the standard approach, but improves
the position of the XY fixed point.

Next we complete the energies in Tables 3.-5. As we can see White’s approach yields
definitively better energies than the standard one. The least progress was obtained
around the lines of the phase transitions: z.(y) and the axis 0z. The deficiencies are
likely to be connected with the increase of the quantum fluctuations.

The energy differences: Aeg x 10°
z 3sa 34 36 4sa 46

0 0 0 0 0 0
0.1 | 1664 2 1 1002 2
0.2 ! 6563 25 9 3779 6

129 47 7970 31
0.5 | 31821 980 459 19269 | 254
0.7 | 44671 | 3568 2541 | 32402 | 1151
0.9 | 50876 | 9554 9181 | 43782 | 3663
1 52821 | 15868 | 16033 | 42110 | 1804
1.1 | 56914 | 27721 | 28222 | 38901 | 719
1.2 ] 56725 | 39202 | 39320 | 36379 | 391

Table 3. The energies for different
1.3 | 54059 | 46708 | 44462 | 34171 | 239 blocks and mcvmazoowmw ¥ = 1. Here
1.5 | 48436 | 45317 | 41531 | 30450 | 108 and in the following tables: Aep =
2 37598 | 34631 | 32778 | 23877 25 E(calculated ) — E(exact).

0.3 | 14154

For both fixed points we have collected the eigenvalues of the RG transformation
and the critical exponents in Tables 6 and 7 (for details see [5]). The critical exponent

@ connected with the specific heat was calculated from the relation [16]: 2 — o =
d" v, where d* = d + 2z (with d the dimension of the space). The critical exponent
v describes the behavior of the correlation length v = log(b)/log();) and z is the
dynamical exponent b=* = J'/J = h'/h, where b is the scaling factor. As we can see
White’s approach gives usually worse results than the standard one. The only exception
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0.2 | 16959 | 18144 | 7358 16185 | 4175
0.3 | 20197 | 16840 | 6049 18914 | 4461
0.5 | 39984 | 12773 | 4596 22147 | 2810
0.7 | 41694 | 3865 | 1641 27544 | 1634
0.9 ! 32964 | 144 178 | 29376 | 72

L | 26408 | 3407 | 3631 19936 | 396
L.1] 22345 | 13804 | 13477 15047 | 49
1.2 | 19396 | 19194 | 15873 12715 | 18
1.3 | 17269 | 17449 | 14597 11197 | 10
1.5 | 14319 | 14061 | 12264 9226 3

2 | 10242 [ 9515 | 8888 6630 1

The energy differences: Aeg x 10

z Jsa 34 36 4sa 46
0 | 70935 | 70935 | 70935 24610 | 8239
0.1 | 73036 | 72928 | 79145 30129 | 11426
0.2 | 77201 | 76557 | 71857 40210 | 21013
0.3 | 79605 | 79773 | 62039 48126 | 46987
0.5 | 78896 | 92996 | 47873 35351 | 29992
0.7 | 50668 | 48306 | 63391 33250 | 10265
0.9 | 16847 | 13313 | 14988 17077 | 10265
>1 0 0 0 0 0
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Table 4. The energies for differext
blocks and superblocks; v = 0.5, ¥ -

Table 5. The energies for &m..maw_n:.,
blocks and superblocks; v = 0. ;
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[ | Exact 3sa 34 36 Exact | 3sa [ 34] 36

Ay - 2.313 2.153 | 2.266 A - 4 3 3

A2 - 0.25 0.355 | 0.373 Az - 22 3 3

v 1 1.311 1.433 | 1.343 v 0.5 0793 | 1 1

z 1 0.631 0.397 | 0.443 z 2 1.262 | 1 1

o 0 —0.137 | —0.002 | 0.062 « 0.5 02071 0 0
Table 6. Eigenvalues and critical exponents
at the [ fixed point. Table 7. FEigenvalues and critical expo-

nents at the XY fixed point.

3. The four-level case.

Since White has found that the accuracy of the representation of the ground state
increases roughly exponentially with the number of states kept, we have decided to check
this also for the AXY model. We calculated the four-level case in the spirit of Jullien’s
paper[2]. In that way we do not reconstruct the new Hamiltonian as a spin Hamiltonian
at cach iterative step. Instead of it, we first combine the 2 sites into groups. These
multi-sites (the spin operators in fact) are now represented as 4 x 4 matrices. We then
bring together the multi-sites into blocks and diagonalize them exactly. Retaining only
4 states, we reconstruct the effective multi-sites with their interactions. At the same
time we obtain the effective multi-site Hamiltonian, which enables us to accumulate the
energy during the iteration. For White’s approach we build a superblock by adding one
more multi-site. This case is compared with the standard approach (4sa), where also
the four states are kept.

Because the effective states should conserve the Hamiltonian symmetry, there are
only two possible assignments. In the first case the two lowest states from an even
subspace of a block rebuild two states of an even subspace of a multi-site and the
two lowest states from an odd block subspace rebuild two states of an odd multi-site
subspace.

T +el Ll + ... = M) TR () — e U,
1T +o LU + ... ~% I0) -+ 145 1) — o[ ). (6)

In the second case the assignment is opposite. But, as we have checked, both assign-
ments yield RG transformations which are identical up to a unitary transformation.

As we can see in Table 2., just as for retaining 2 states, White’s approach gives the
exact value for the XY fixed point and comparing with the standard approach the worse
position for the I fixed point. Tables 3.-5. present as before differences of the energy
with respect to the exact values. As we can see for the case with the four states kept,
White’s approach gives a strong improvement over the standard technique, however, as
usual the least progress is along the lines of phase transitions.
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4. Conclusion.

We have tested White’s proposal for a model with two lines of phase transitions i
the ground state (the d = 1 AXY) and have confirmed his statement about a greatey .
accuracy of the energy. This accuracy increases rapidly when we keep more stateg
in each renormalization step. So, in order to improve results we should increase the
number of states kept rather than enlarge a superblock. The least progress is always
obtained close to the lines of phase transitions.

In this paper we presented the eigenvalues of the RG transformation and critical
exponents for the method with 2 states kept. We have checked that White’s approach

was discussed [9], using the multi-sites we are not able to calculate critical exponents,
We see this as an open problem. .
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