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The asymmetric exclusion model describes a system of particles hopping in a
preferred direction with hard core repulsion. These particles can be thought of as
charged particles in a field, as steps of an interface, as carsin a queue. Several exact
results concerning the steady state of this system have been obtained recently. The
solution consists of representing the weights of the configurations in the steady
state as products of non-commuting matrices. In this talk we will review this
technique and several results concerning the steady state of the system : density
profiles, correlation functions and diffusion constants.

1. Introduction

Systems of particles with hard core repulsion and stochastic dynamics are non-
equilibrium models with non-trivial steady states [1-4]. By non-equilibrium models we
refer to the broad class of systems, including driven lattice gases [5-12] and growth
processes [13-15] which evolve according to simple microscopic dynamic rules that are
local and stochastic but which do not satisfy detailed balance with respect to any
reasonable energy function. One then does not have the usual formalism of equilibrium
statistical mechanics with which to determine the steady state.

In this work we review some recent exact results [16-18] for a family of particularly
simple models of hopping particles ~ the asymmetric exclusion process in various ge-
Ometries and with one or more species of particles. These results, which include exact
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w.kmn us a.mmSm the system to be considered. Each site of a one dimensional lattice of
N sites is either occupied by one particle or empty. A configuration of the system is -
ormgn.ﬁm:m& by N binary variables {r, 19, - '~} where 7, = 1 if site ¢ is occupied 'K
a particle and 7; = 0 if site { is empty. During an infinitesimal time interval dt, mmow

. - In other words a particle hops forward with rate 1
whenever there is an empty site on its right. ,

Different variants of the model can be considered by imposing different co:amwi‘

conditions for the lattice. For g finite system of NV sites two kinds of boundary conditions
are often considered:

Periodic boundary conditions wher

€ Ti+~ = 7; and the number of particl H
i 7 is fixed [5,6,18]. * HEEE B peTtales M =

Evolution of the Correlation Functions

Armed é:r.ﬁrm a%umm.iom_ rules of the model, one can easily derive the equations which
govern the time evolution of any correlation function. For example, if one considers the

ooo:vwa.oz of site ¢ (for the moment we consider a non-boundary site to avoid choosing
any particular boundary conditions) one can write down

7i(t +dt) = 7i(t) with probability 1 — 24t (€8]
() +[L - n()] mo1(t)  with probability ds @)

. ».:,MM
7i(t)Ti41(2) with probability d¢ . (3

The ma.mﬁ mo:.magw comes from the fact that with probability 1 — 2dt, neither of a.q _,
bonds 7 — Liiorii+41is updated and therefore 7; remains unchanged. The second

&AJV _
dr = (Tl = 7)) — (n(1 = 7yy))

Nm‘rm mwvam kind of reasoning allows one to write down an equation for the evolutioii o
TiTit1) -
&Aﬁ. ﬁ.+~v
Tar = Tt = )R ) = (g (1 - 1)
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For periodic boundary conditions, where the system 'has translational invariance,
equations of the form (4,5) hold for all . For open boundary conditions one has to
consider boundary effects; the equation for the evolution of the 1-point correlation
function (4) becomes at the boundaries

QMMV =o{(l - 1)) — (n(1 - ) (6)
% ={rv_1(1—7w)) — B{rn) )

Once relations of the type (4,5,6,7) are written, one can in principle calculate the
time evolution of any quantity of interest. However, the equation (4) for {(7:) requires
the knowledge of (r;7;11) which itself {(5) requires the knowledge of (fic17i41) and
(i—1TiTi+1) so that the problem is intrinsicly an N-body problem in the sense that the
calculation of any correlation function requires the knowledge of all the others. This is
a situation quite common in equilibrium statistical mechanics where, although one can
write relationships between different correlation functions, there is an infinite hierarchy
of equations which in general makes the problem intractable. In what follows, we shall
see however that both for periodic and for open boundary conditions, all the correlation
functions in the steady state can be calculated exactly.

In the steady state, the correlation functions satisfy equations of the form (4,5,6),
(7) where the left hand sides are set to zero.

For the case of periodic boundary conditions these equations can, in fact, be solved
immediately [13] by recognizing that each configuration (with the correct number M of
particles) has equal probability P,

("

This can be easily checked because if all configurations have equal weight, then to
conserve probability the rate at which the system leaves a configuration must be equal
to the rate at which it enters that configuration. To see that this is so one notes that the
rate at which the system leaves a given configuration is equal to the number of clusters
of particles in that configuration (the first particle of each cluster can hop forward)
and the rate at which the the system may enter that configuration is also equal to
the number of clusters (by the move of the last particle of each cluster). To see that
this form of the probabilities (8) satisifies (4-7) one considers, for example, the 2-point
correlation functions. It follows from (8) that (ri7;) will take the same value regardless
of the positions of sites 1, j. Similarly any n-point correlation will be independent of the
Positions of the n points (as long as they are all different). With correlation functions
of this form it easy to see that the right hand sides of (4,5) are automatically zero
and similarly any steady state equations for higher order correlation functions would
be satisfied.

In the case of open boundary conditions one might try to look for a solution of a
similar form. However, since the number of particles is not conserved, a corresponding
guess as to the form of the stationary probabilities would be that configurations with
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he same number of particles have the same probability. For a+ 8 = 1, such a solutiop

”_
momm mima?mm Um_oévmgiinrm: correlation functions are factorised (ri7j) = ()2
with - Q..J

a={(r)=1-4.

2. Matrix Formulation of Steady State For Open Boundaries

Let us now mmmmn.:vo a way of calculating the steady state properties in the case of ovou _
vom:am@ conditions that we developed in collaboration with V. Hakim and V. Pasquier,
This approach has been used to solve other problems of statistical mechanics (directed

_mﬁ.ﬂmom migﬁm?& and quantum antiferromagnetic spin chains [20-22]). The idea is to
write the weights Sn(mo.. 7n) of the configurations in the steady state as AP

g

=)

e 1
In(ricomn) = (W] (=D + (1 - myE vy (10)

where D, E are matrices, (W|, |V} are vectors (we use the standard Bra Ket notation of
quantum mechanics) and 7; are the occupation variables. In other words in the product
(10) We use matrix D whenever 7; = | and £ whenever 7; = (. Since, as we shall see, the
Bwﬁz.nmm D and F do not commute in general, the weights fy(ry ... Tn) are no:gvzmwamm
functions of the configuration {r .. -Tn}. As the weights fn(ri...7x) given by (10)

are usually not normalised the babili ion
: ’ probability px(7y,...7x) of 2 confi t e
in the steady state s AT ) ekl e ﬂzw

-1

PN(TLTN) = f(m, ) > M In(m, .. 1)

T1=1,0 T~N=1,0

Of course, ﬁoa looking at (10) it is not obvious that such matrices D, F' and vectors =
(W], V) exist. We shall see, however, that it is possible to choose these matrices ‘and’

<Momo_.m moarma.xzﬁd,. .ﬂzvm?osg\ (10) are indeed the actual weights in the steady
state. ARG

| Before presenting some explicit forms for the matrices and vectors involved w: (10)
et us show how the approach leads to a straightforward computation for the correlation
functions. If one defines the matrix ¢ by w

C=D+F,
it is clear that (7;) 5 defined by

(Wn =30 0 3 nfu(n,.. ) 2o Y It

71=1,0 T~=1,0 71=1,0 TN=1,0
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can be calculated through the following formula

(W|C1DCN =iy
(WicrNv)

(rijn = (14)
In the same way, any higher correlation will take a simple form in terms of thiese
matrices. For example, when i < J, (1iTj) N is equal to

(W|C'1DCI =1 pCN=i|y)

Aﬁ.d.vz = AS\_Q2_<V - (15)

Therefore, all we require in order to be able to calculate arbitrary spatial correlation
functions is that the matrix elements of any power of C' = D + E have manageable

expressions.
One can show [16] that if the matrices D, E and the vectors (W], V) satisfy (16-18):

DIV} = W_S (16)
DE = D+E (17)
WIE = WE\_“ (18)

then (10) does give the steady state.

We shall not repeat here the proof that (16-18) are sufficient conditions to give the
weights in the steady state. It is however easy to check that the relations (4,5,6,7) will
be satisfied in the steady state provided that the corresponding identities hold

DE(D+E)=(D+E)DE (19)
DEDD+E)=(D+E)DDE (20)
o« (W E(D+E)=(W|DE (21)
DEWV)=8(D+E)D|V) (22)

and that these relations are immediate consequences of the algebraic rules (16-18).
Another easy check that (16-18) do give the right steady state is to look at some
special configurations. If one takes the case of a configuration where the first p sites are
empty and the last N — p are occupied, it is easy to show that in the steady state one
must have

(WIEPTIDEDN=P=1|V) = o(W|EF DN~P|V) + B(W|EP DN-7|V) (23)

since this expresses that during a time interval dt the probability of entering and leaving
the configuration are the same. Here again, this equality appears as a very simple
consequence of the algebraic rule (16-18).
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.mm.: the line (a + 8 = 1) we mentioned above that the steady state becomes trivia]
Hr_m s reflected by the fact that one can choose commuting matrices D and £ to soly.
(16-18). If D and E commute one can write ,;,o

I o1
AM - wv (WIV) = W|D+ EIV) = (WIDE\V) = (W|ED|V) = mwA%_S B

As (W|V) # 0, this clearly implies that o + 8 = 1. This is a well known specig]
case where the steady state is factorised (fn(m,.. .Tn') depends only on 3. 7; angd’ il
nObstmm correlations vanish). Under this condition (a4 B = 1), one can erOmm GM.
matrices D and F to be unidimensional, with D = §-1 and g — eHL. g

The previous remark also shows that for o + B # 1, the size of the matrices ‘D j
E:m&. be greater than one. The next question is whether one can find finite dimensionz]
.Em.“:nm.wm that will satisfy (16-18). It turns out that one can prove [16] that thigs
5%0%.&5 (if D and E were finite dimensional matrices, the relation DE — Dy g
would imply that D ~ E(1 - E)~! which itself would imply that the matrices D and-
E commute). So the only possibility left is to use infinite dimensional matrices, .

In order to perform calculations within the matrix formulation there are basically -

one can make a particular choice of matrices and use it to the full. In the latter case
there are several possible choices for the matrices D, E and vectors (W1,]V) that satisfy

(16-18). One p articularly simple choice, which has proved useful in the extensions of -
the approach to be discussed below is R

SO O
SO =
O = O
OO
[ e R Y
O D
-0 O
-0 O Qo

Wi=(1 (), (27 ) = (52)°

P

This choice makes the particle-hole symmetry of the problem apparent since orm, Em"a%n
ces D and E have very similar forms and the boundary conditions o and 3 only appear,
In the vectors (W[ and [V). For this choice (25) of D, E the elements of CN (wher

C'=D+FE and N denotes the Nth power of matrix C) are given by
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Expression (27) can be obtained by noting that Aﬁ_zvas is proportional to the proba-
bility that a random walker who starts at site 2m of a semi-infinite chain with absorbing
boundary at the origin, is at site 2n after 2N steps of a random walk . This probability
may be calculated by the method of images.

An apparent disadvantage of this choice (25,26) is that, due to the form of {(W| and
[V), one has to sum geometric series to obtain the correlation functions and these series
diverge in some range of a, 8 ( in fact o + 8 < 1). However, at least for finite N, all
expressions are rational functions of &, 8 so that in principle one can obtain results for
a+ B <1 by analytic continuation from those for o + B8>1.

Other choices of matrices and vectors are possible [16], which solve the equations
(16-18). For example, a possible choice of D, E,(W|,|V), that avoids the divergences

18

1/8 a 0 0 1/a 0 0 0
0 110 a 10 0
. 6 0 1 1 o 110
D=1 9 00 1 E=1 9 011 (28)
1
) ] 0
(Wi=(1,0 0 ..) =1 o (29)
where A1
2 @ -
@ =TT (30)

The fact that a? may be negative is of no importance, because in the calculation of any
required matrix element, a only enters through a?. One should note that for o = g=1,
we have @ = 1 and (28,29) coincides with our previous bidiagonal choice (25,26). Also,
a vanishes for a + 8 = 1 so that the 1,1 elements of the matrices D, E decouple from
the other elements. This choice of matrices then becomes, for the purposes of our
calculations, one dimensional as is sufficient for this special case of o and f.

Instead of using explicit forms for the matrices, one can calculate directly matrix
elements such as those which appear in (14,15) from the commutation rules (16-18).
For example, one can easily show that

(WIC|lV)  (WID+EV) 1 1

Wivy ~ W) aTF (31)
(W|C*|V) _ (W|D?+ ED + E? 4+ D + E|V) I 1 11 1
Wiy = Wiy TEtgtEtaty G2

The general expression of (W[CN|V) (where C = D + E) for all values of @ and 3 has
been shown to be [186]

(wichv) W p (2N —1—p)l gP=1 _ q=p-1
p=0

(33)

wivy  ~ NT(N—p)l  BT_a-1
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Some results
Once the matrix elements of C are known, expressions for several quantities can wW
derived. For example, in the steady state, the current through the bond i+ 1k
simply J = (r;(1 — Ti+1)), because during a time df, the probability that a particle.
Jumps from ¢ to i 4 1 is Ti(1 — 1y )dt. Therefore, J is given by K

W|Ci-1DECN-i-1|y W|CN-1y
;oW V) _ wich-1p) o

(Wlcrh|v) (WicNvy
where we have used the fact (17) that DE = C. This expression is-independent ow‘n,.,a ‘
as expected m.u the steady state. From the large N behaviour of the matrix elements
(WICN|V) given by (33) one can show [16] that there are three different phases where . -
the current J is given by

15

() @oHQNwm:QRNW

1 ‘ ¥
nN” Nﬁ Awmv :
(i) Fra <l and 8> o " .
J=a(l —a), (36)
QE@QQAWE&QVQ "
J=p6(1-0). (37)

Thus, the phase diagram consists of three phases: a > wv 8> w < ww B>a;8< wn

@ > . This is exactly the phase diagram predicted by the mean field theory [7,9].

From the knowledge of the matrix elements (W|C¥ V), one can also obtain [16] exact!
expressions for all equal time correlation functions. For example the profile (r;)n+is
given by .j,

e = S 2 (W|CN-1-s )
{ri)w = Mu_ P+1)! (W|CN[V)

+

(wici-1|v) M (p— 1)(2n —p)!
{(W[CN|V) = n! (n+1-p)!

p=0

where n = N —i. Several limiting behaviours (N large, i large) are discused in [16]. In
the case a = # = 1, one can even perform the sums in (38) to obtain [9]
1 N-2i4+1 (2 (N1)2 N — 2 !

(raw =L ¢ No2AL @) (W2 (N -2i40)
?:»32+C;Q<Is+ ::w
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3. Diffusion Constant and Non-equal Time Correlation Functions For
Periodic Boundary Conditions

One can also try to extend the matrix approach to calculate more general steady state
properties than equal time correlation functions. The first result of this kind [18] is the
exact expression of the diffusion constant A for a system of M particles on a ring of
N sites in the fully asymmetric case (each particle jumps to its right neighbour with
probability dt when the right neighbour is empty). If we consider a tagged particle
(which has exactly the same dynamics as the M — 1 other particles) and if we call Y:
the number of hops performed by this tagged particle between time 0 and time t, one
expects that in the long time limit:

2y _ 2
lim B =v ; lim ) - () =A, (40)
t—oo ¢ t—o00 t
The velocity v and the diffusion constant A are given by
_NoMo (2N ~ 3)! (M —DI(N - Mm)1? (a1)
YTNZT T (2M — 1)1 (2N - 2M — 1) (N =1)!

A derivation of this result based on the matrix technique described above is given
in [18]. The idea is to consider quantities < Y;|C > which are the conditional averages
of the number of hops made by the tagged particle up to time i, given that the system
is in configuration C at time ¢. One can show [18,23] that in the long time limit

< HC >— vt + r(C)/p(C) (42)

and with the knowledge of the quantities r(C) one can compute the diffusion constant.
In [18] it-is shown how 7(C) may be calculated within the matrix formulation.

Let us discuss here the connection between the diffusion constant and non-equal
time correlation functions of the 7; variables. In order to see this, it is convenient to
introduce another random variable Y: which represents the number of particles which
have jumped from site 1 to site 2 between time 0 and time ¢. Since the particles can
not overtake each other it is clear that

M\m = (V. 2 2
: _:\HH A uv A uv \<
t—oo M i—o0 ¢ t—o0 I3 M? i~ t

(43)

It is then rather easy to see how the moments of ¥, are related to unequal time correla-
tion functions. If one decomposes the time t into 7" infinitesimal time intervals dt with

T =t/dl, one can write Y, as
T

A S (44)

k=1
where ap = 1if a particle jumps from site 1 to site 2 at time kdi and a; = 0 otherwise.
All the a; are random variables with

ap = 1 with probability 7 (kdt)(1 — ma(kdt))dt (45)
= 0 with probability 1 — 7 (kdt)(1 - my(kdt))di . (46)
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then
limi oo 3 [(F2) - (72)?) e
= lim;_, AW MMHH :va e Aawvm_ + WMM_HH MM~H»+~ :Qaa:iv = AQ»VAQTVC . AA.J :

Taking the continuous time limit (dt — 0) one obtains for ¢ — oo

M2 .
—5A = AQ.HAH = ﬂwvv i

N2
2L dt [(r (@1 = o) m (0)(1  (0)) ~ (1 = r3))?] . (48)

So we see that the exact expression of A gives some information about unequal time
correlation functions. Of course it would be interesting to know whether the matrix
approach could be sufficiently refined to give exact expressions for all unequal time
correlation functions, however at present this seems to us a very remote goal.
Two limiting cases of (41) are worth mentioning. First if one takes the limit N — oc
keeping M fixed, one finds
[(M — 1)1]24M -1
(2M —1)!

In that limit, it is clear that the particles almost never see each other and one EmmE
fancy that A = 1, the value it takes when there is a single particle in the system.
However this is not the case and A depends on M because the collisions’ between two
particles are highly correlated in time. ,

Another limit one can consider is that of a given density p of particles p in an infinite
system (M = Np as N — oo in (41))

A=

(49)

aTSH
AT T Em _ N7 )

The fact that A vanishes for N — oo indicates that in the infinite system the
fluctuations of the tagged particle are subdiffusive. This can be seen by considering
that for finite ¢ and N, the quantity (¥;?) - (¥;)? is a function of the two variables ¢ and
N. When both £ and N are large, one can expect the following sort of scaling form

(¥2) = (V)2 o t2g(t/N7) (51)
When ¢ — oo first and N is large one knows from the above results that
(Y3) = (V)2 ~ ¢ N7112 (52)

This of course glves some constraints on the exponents w and v and on the behaviour
of the function ¢ for large values of its argument:

9(z) ~2'7* a5 . oo (53)

A
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with 7(1 — 20) = 1/2. To determine the values of the exponents w and Y one needs
another relation which can be obtained via the following additional argument: for large
N, one can ask at what time ¢ does the tagged particle notice that it moves on a finite
lattice of size N instead of an infinite lattice. To estimate this time one can use the
result [5,6] that the longest relaxation time in the system scales like N3/2, Thetrefore,
7 = 3/2 and one obtains w = 1/3.

In the hope of being able to calculate more general time correlations in the steady
state, one can wonder whether result (41) can be generalised. The simplest extension
one can consider is the case of open boundary conditions. In that case if one denotes
by Y; the number of particles which have entered the lattice at site 1 between times 0
and ¢ one can evaluate the current and diffusion constant

2y 2
sza@u.\. ; Jim c\LNEV = A (54)

Using a matrix technique [23] one can show that A is given by following expression in
the case a=f =1 ‘

N +2 . A= SN NU(N 4
4N +2 2 [N+ )P (2N + 3)!

§= (55)

(The expression for J corresponds of course to that calculated in section 2) -

One should notice that again A vanishes like O(N~'2) as N — 00, However in the
low density and high density phases the diffusion constant remains finite as N — oo
[23].

4. More than One Species of Particle

One possible generalisation of the model is to the case of more than one species of
particles. For example one can consider 2 system containing two species of particles,
which we represent by 1 and 2, and holes represented by 0 in which the hopping rates
of the two species of particles are

10 — 01 withratel
20 — 02 withratey (56)
12 — 21 withrate$

Even for the case of periodic boundary conditions the steady state of this model is in
general non-trivial. Nevertheless, the steady state weights may be obtained by writing
them in the form [17]

trace(X; X3 - - - Xn) (57)

where X; = D ifsite 7 is occupied by a 1 particle, X; = A if it is occupied by a 2 particle
and X; = E'if it is empty. The translational invariance of a product of matrices under
the trace operation used in (57), reflects the translational invariance of the periodic




349 M. Evans, B. Derrids

Uo::.%:% conditions. One can prove that (57) gives the steady state of this system
provided that the matrices D, A and F satisfy the following algebra [17] e

DE=D+ E i DA=A ; yAE=A.

The second two of these equations are satisfied when A is given by
A= V(W]

and

DIV)=2v) 5 wip= Lo
Y
So one can use any of the matrices D, E presented for the case of open vopnmw@
conditions (25,28) and construct matrix A from the vectors (W|, [V) (26,29) with &
replaced by v and 8 replaced by 6. :

A case of the two species problem of particular interest is that of first and second
class particles. This corresponds to v = § = 1 so that all hopping rates are 1-4nd
both first and second class particles hop forward when they have a hole to their right;
.vi when a first class particle has a second class particle to its right the two particles
interchange positions. In regions of a low density of first class particles and a high
density of holes, a second class particle will tend to move forward whereas in a high
density of first class particles and a low density of holes a second class particle will
tend to move backward. For this reason, second class particles were first introduced’ i
the context of an infinite system in order to track the position of shocks (recall that a
shock is a change in the density of particles over a microscopic distance) [25,26,27,28].
On a finite system with periodic boundary conditions the steady state is unique and
corresponds to a uniform density. However it has been shown that even in the case of
periodic boundary conditions one can use a finite density of second class particles to:
probe the structure of shocks [27,28]. The idea is that from the point of view of any
particular second class particle, those second class particles to its right are equivalent -
to first-class particles whereas second class particles to its left are equivalent to holes
Thus, by calculating the density profile of first and second class particles in a md_nm :
system as seen from a second class particle located at the origin, nstry
shock profiles by taking the limit of an infinite system and using the density of first
nr.ymm particles to the left of the second class particle as the profile to the left of the
origin and the density of first and second class particles to the right of the second class .
particle as the profile to the right of the origin [17].

.>: m.sﬁmwwmasm result concerns the case of a finite number of second class particles'in
an infinite uniform system of first class particles at density p. It can be shown that they
form an algebraic bound state, i.e. the probability of finding them a distance r apar
mmo.m%m like a power law in r. For example, in the case of two second class particles:in
an infinite system of first class particles at density p, the probability P(r) of finding
them a distance = apart is given by [17]

r—1 i

»UT: = p(1 - 2p o \2r—2p-2 .1?. — uv_
A P ¥ GRS e ]
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which decays for large r as

P(r) = (62)

1 1
2y/mp(1 = p) 3%
Thus, the two second class particles form a bound state although their average distance
is infinite.

Using the matrix approach one can also calculate [29] a diffusion constant A for a
single second class particle in the presence of M first class particles by considering Y; as
the distance forward (the number of hops forward minus the number of hops backwards)
travelled by the second class particle between time 0 and time t, and define a diffusion
constant A through (40). One finds

A = o (2N - 3)! M\(N — M — 1)1]?
T @M+ 1)I2N —2M — 1) (N —1)!
X[(N=B)M(N —M —1)+ (N -1)(2N - 1)] . (63)

(Here the velocity of the second class particle is v = (N =2M ~ 1)/(N —~ 1)). The
formula simplifies when the N'— oo limit is taken with M = Np and the leading order
of (63) is
1/2
4

This large N dependence contrasts with that of the corresponding formula (50) for the
diffusion constant of a first class particle which behaves as N—1/2. It is consistent with
the idea [4] that in an infinite system a single second class particle displays superdiffusive
fluctuations in its position ((Y;?) — (V,)2 ~ 4/3),

A~

5. Conclusion

The matrix representation of the steady state leads to several exact results for the
asymmetric exclusion process. We have discussed here the steady state of the system
with open boundary conditions [16), diffusion constants for systems with periodic [18]
and open boundary conditions [23], and steady states for two species of particles [17,24].

There are several other possible generalisations, for example throughout this work
we have been concerned with totally asymmetric exclusion although one could equally
consider the partially asymmetric exclusion problem where particles can hop either to
the right with probability pdt or to the left with probability ¢dt (withg =1—p). In
that case one can show [16] that replacing (17) by

pDE —qED =D+ E |, (65)

still gives the steady state. When p = 1/2 (the case of symmetric exclusion) it is
known that with periodic boundary conditions detailed balance is satisfied, so that
qualitatively different behaviour from the asymmetric case might be expected. For
P = 1/2 the diffusion constant has previously been calculated {30] and the dependence
on the system size is N~! as opposed to the N—1/2 dependence of (50). This is related
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to .nro fact that both for the asymmetric and the symmetric cases, the fluctuations, of
Yy in the infinite system are subdiffusive ( (Y,?) — (Y1)2 ~ t2/3 for the asymmetric cag,
and ~ ¢1/2 for the symmetric case). :

We have made a numerical calculation of the diffusion constant of a tagged particle
on systems of sizes 2 < N < 10 for P =(1+€)/2 (on aring of N sites with M particles)
For ¢ small the first terms of the expansion seem to be given by i1

o N—M _ _ s
A= i ea g e ooy
—t 2 (M—1)(M-2) (N-MYN—-M—1)(N—M_

< % M- >M ) (N VAAZLVMQ&S M-2) +0(e%) (66)

Hrmm ~om.:rm is so far .ou_% a conjecture based on the analysis of our data. One can see ..&ma ;
in the limit of a finite density of particles on an infinite ring (N — oo with M = 23.“ :
the r.wﬂbm. are of order 1/N, €2 ¢*N ..., Thus it appears that for large N and small ¢ -
the diffusion constant should be of the form . !

A~ o) | (67)

gk
[y
i

with g(z) ~ O(1) for z = 0 and 9(z) ~ 22 for large = where the function g would
describe the crossover between the asymmetric and symmetric processes. i

. va asymmetric exclusion process is connected to several other problems of interest.
First it can be mapped exactly onto a model of a growing interface in (1+ 1) dimensions
.T& by wmmoﬁmﬁ.um to each’ configuration {r:} of the particles, a configuration of an

wo&iwn with a neighbouring hole to the right, corresponds to an interface dynamic
in which a downwards step followed by un upwards step may become an upwards sté
followed by a downward step. In other words, a growth event occur:

of the interface height with probability dt i.e. if hi(t) = hipa(t) = hit1(¢) + 1 then’ it

hiva(t + dt) = hiy1(?) with probability 1 — dt
= hi(8)+2 with probability dt

= eights of two neighbouring’
positions on the the interface is always of magnitude one unit. R

Periodic boundary conditions for the particle problem with A particles and N.— M-
ro_mm. correspond to an interface satisfying Iy n = h;+ N —2M, i.e. to helical boundary.
conditions with in average slope 1 — 2M/N. The case of open boundary ooa&momm

corresponds to special growth rules at the boundaries. Because of this equivaleng
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several results obtained for the asymmetric exclusion process can be translated into
exactly computable properties of the growing interface [10].

The above growth model has the difference in heights between neighbouring sites
restricted to be £1, and the mapping to asymmetric exclusion involves associating a
particle with a height difference of —1 and a hole with a height difference of +1. In a
similar fashion one may map the two species asymmetric exclusion model discussed in
section 4 onto a growth model where the height differences are restricted to be 41,0, -1
by assoclating type 1 particles with height differences of —1, type 2 particles with height
differences of 0 and holes with height differences of ~1. The effect of open boundaries
on such a growth model is examined in [24].

As is well known [31], the problem of growing interfaces is equivalent to the problem
of directed polymers in a random medium . It would be of interest to see what kind
of quantities could be calculated exactly in the directed polymer problem through the
mapping from the asymmetric exclusion process. )

As well as the mappings to growth described above other possible mappings from
systems of hopping particles to models of physical interest exist. For example, repton
models of diffusion of polymer chains and gel electrophoresis may be formulated in
terms of exclusion processes with various numbers of species of particles [32-35]. It
would certainly be interesting to see whether these models could be attacked using
similar techniques to those outlined here. .

Another possible direction in which this work might be extended would be to ex-
amine the effects of disorder. Disorder could be introduced in a variety of ways, for
example, the hopping rate of each particle could be a quenched random variable. If the
hopping rates took only two values and the particles did not overtake each other the
disorder would be in the sequence of the particles. For any order of the particles we can
describe the steady state in this case as it corresponds to the limit § — 0 of the two
species model discussed in section (4). Then the problem would be to analyse the effect
of the quenched disorder of the sequence on various properties such as the current and
the diffusion constant.

Lastly, a question we feel would be worthwhile answering, concerns the relation of the
matrix approach to other techniques that are commonly used in statistical mechanics.
It is known that in the case of periodic boundaries [5,6], or of parallel updating [1 1j,
the asymmetric exclusion model can be solved by means of the Bethe ansatz. It would
certainly be instructive to better understand the link between the traditional Bethe
ansatz approach and the matrix formulation we have used here.
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